Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Marie is active.

Publication


Featured researches published by Benjamin Marie.


Current Topics in Developmental Biology | 2007

Molluscan Shell Proteins: Primary Structure, Origin, and Evolution

Frédéric Marin; Gilles Luquet; Benjamin Marie; Davorin Medakovic

In the last few years, the field of molluscan biomineralization has known a tremendous mutation, regarding fundamental concepts on biomineralization regulation as well as regarding the methods of investigation. The most recent advances deal more particularly with the structure of shell biominerals at nanoscale and the identification of an increasing number of shell matrix protein components. Although the matrix is quantitatively a minor constituent in the shell of mollusks (less than 5% w/w), it is, however, the major component that controls different aspects of the shell formation processes: synthesis of transient amorphous minerals and evolution to crystalline phases, choice of the calcium carbonate polymorph (calcite vs aragonite), organization of crystallites in complex shell textures (microstructures). Until recently, the classical paradigm in molluscan shell biomineralization was to consider that the control of shell synthesis was performed primarily by two antagonistic mechanisms: crystal nucleation and growth inhibition. New concepts and emerging models try now to translate a more complex reality, which is remarkably illustrated by the wide variety of shell proteins, characterized since the mid-1990s, and described in this chapter. These proteins cover a broad spectrum of pI, from very acidic to very basic. The primary structure of a number of them is composed of different modules, suggesting that these proteins are multifunctional. Some of them exhibit enzymatic activities. Others may be involved in cell signaling. The oldness of shell proteins is discussed, in relation with the Cambrian appearance of the mollusks as a mineralizing phylum and with the Phanerozoic evolution of this group. Nowadays, the extracellular calcifying shell matrix appears as a whole integrated system, which regulates protein-mineral and protein-protein interactions as well as feedback interactions between the biominerals and the calcifying epithelium that synthesized them. Consequently, the molluscan shell matrix may be a source of bioactive molecules that would offer interesting perspectives in biomaterials and biomedical fields.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell

Benjamin Marie; Caroline Joubert; Alexandre Tayale; Isabelle Zanella-Cléon; Corinne Belliard; David Piquemal; Nathalie Cochennec-Laureau; Frédéric Marin; Yannick Gueguen; Caroline Montagnani

Mollusca evolutionary success can be attributed partly to their efficiency to sustain and protect their soft body with an external biomineralized structure, the shell. Current knowledge of the protein set responsible for the formation of the shell microstructural polymorphism and unique properties remains largely patchy. In Pinctada margaritifera and Pinctada maxima, we identified 80 shell matrix proteins, among which 66 are entirely unique. This is the only description of the whole “biomineralization toolkit” of the matrices that, at least in part, is thought to regulate the formation of the prismatic and nacreous shell layers in the pearl oysters. We unambiguously demonstrate that prisms and nacre are assembled from very different protein repertoires. This suggests that these layers do not derive from each other.


FEBS Journal | 2007

The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida)

Benjamin Marie; Gilles Luquet; Jean-Paul Pais de Barros; Nathalie Guichard; Sylvain Morel; Gérard Alcaraz; Loı̈c Bollache; Frédéric Marin

Among molluscs, the shell biomineralization process is controlled by a set of extracellular macromolecular components secreted by the calcifying mantle. In spite of several studies, these components are mainly known in bivalves from only few members of pteriomorph groups. In the present case, we investigated the biochemical properties of the aragonitic shell of the freshwater bivalve Unio pictorum (Paleoheterodonta, Unionoida). Analysis of the amino acid composition reveals a high amount of glycine, aspartate and alanine in the acid‐soluble extract, whereas the acid‐insoluble one is rich in alanine and glycine. Monosaccharidic analysis indicates that the insoluble matrix comprises a high amount of glucosamine. Furthermore, a high ratio of the carbohydrates of the soluble matrix is sulfated. Electrophoretic analysis of the acid‐soluble matrix revealed discrete bands. Stains‐All, Alcian Blue, periodic acid/Schiff and autoradiography with 45Ca after electrophoretic separation revealed three major polyanionic calcium‐binding glycoproteins, which exhibit an apparent molecular mass of 95, 50 and 29 kDa, respectively. Two‐dimensional gel electrophoresis shows that these bands, provisionally named P95, P50 and P29, are composed of numerous isoforms, the majority of which have acidic isoelectric points. Chemical deglycosylation of the matrix with trifluoromethanesulfonic acid induces a drastic shift of both the apparent molecular mass and the isoelectric point of these matrix components. This treatment induces also a modification of the shape of CaCO3 crystals grown in vitro and a loss of the calcium‐binding ability of two of the main matrix proteins (P95 and P50). Our findings strongly suggest that post‐translational modifications display important functions in mollusc shell calcification.


Molecular Biology and Evolution | 2013

The Skeletal Proteome of the Coral Acropora millepora: The Evolution of Calcification by Co-Option and Domain Shuffling

Paula Ramos-Silva; Jaap A. Kaandorp; L. Huisman; Benjamin Marie; Isabelle Zanella-Cléon; Nathalie Guichard; David J. Miller; Frédéric Marin

In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins—the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The organic matrix (OM) extracted from the coral skeleton was analyzed by mass spectrometry and bioinformatics, enabling the identification of 36 SOMPs. These results provide novel insights into the molecular basis of coral calcification and the macroevolution of metazoan calcifying systems, whereas establishing a platform for studying the impact of OA at molecular level. Besides secreted proteins, extracellular regions of transmembrane proteins are also present, suggesting a close control of aragonite deposition by the calicoblastic epithelium. In addition to the expected SOMPs (Asp/Glu-rich, galaxins), the skeletal repertoire included several proteins containing known extracellular matrix domains. From an evolutionary perspective, the number of coral-specific proteins is low, many SOMPs having counterparts in the noncalcifying cnidarians. Extending the comparison with the skeletal OM proteomes of other metazoans allowed the identification of a pool of functional domains shared between phyla. These data suggest that co-option and domain shuffling may be general mechanisms by which the trait of calcification has evolved.


ChemBioChem | 2009

Evolution of Nacre: Biochemistry and Proteomics of the Shell Organic Matrix of the Cephalopod Nautilus macromphalus

Benjamin Marie; Frédéric Marin; Arul Marie; Laurent Bédouet; Lionel Dubost; Gérard Alcaraz; Christian Milet; Gilles Luquet

Matrix evolutions: We have biochemically characterized the nacre matrix of the cephalopod Nautilus macromphalus, in part by a proteomic approach applied to the acetic acid‐soluble and ‐insoluble shell matrices, as well as to spots obtained after 2D gel electrophoresis. Strikingly, most of the obtained partial sequences are entirely new, whereas a few correspond only partly with bivalvian nacre proteins. Our findings shed new light on the macroevolution of nacre matrix proteins.


ChemBioChem | 2008

Nacre Calcification in the Freshwater Mussel Unio pictorum: Carbonic Anhydrase Activity and Purification of a 95 kDa Calcium-Binding Glycoprotein

Benjamin Marie; Gilles Luquet; Laurent Bédouet; Christian Milet; Nathalie Guichard; Davorin Medakovic; Frédéric Marin

The formation of the molluscan shell is finely tuned by macromolecules of the shell organic matrix. Previous results have shown that the acid‐soluble fraction of the nacre matrix of the freshwater paleoheterodont bivalve Unio pictorum shell displays a number of remarkable properties, such as calcium‐binding activity, the presence of extensive glycosylations and the capacity to interfere at low concentration with in vitro calcium carbonate precipitation. Here we have found that the nacre‐soluble matrix exhibits a carbonic anhydrase activity, an important function in calcification processes. This matrix is composed of three main proteinaceous discrete fractions. The one with the highest apparent molecular weight is a 95 kDa glycoprotein that is specific to the nacreous layer. P95, as it is provisionally named, is enriched in Gly, Glx and Asx and exhibits an apparent pI value of ∼4, or ∼7 when chemically deglycosylated. Furthermore, its glycosyl moiety, consisting of sulfated polysaccharides, is involved in calcium binding. Purified fractions of the three main proteins were digested with trypsin, and the resulting peptides were analysed by mass spectrometry. Our results suggest that identical peptides are constitutive domains of the different proteins. Partial primary structures were obtained by de novo sequencing and compared with known sequences from other mollusc shell proteins. Our results are discussed from an evolutionary viewpoint.


Journal of Molecular Evolution | 2011

Molecular evolution of mollusc shell proteins: insights from proteomic analysis of the edible mussel Mytilus

Benjamin Marie; Nathalie Le Roy; Isabelle Zanella-Cléon; Michel Becchi; Frédéric Marin

Shell matrix proteins (SMPs) that are embedded within calcified layers of mollusc shells are believed to play an essential role in controlling the biomineral synthesis and in increasing its mechanical properties. Among the wide diversity of mollusc shell textures, nacro-prismatic shells represent a tremendous opportunity for the investigation of the SMP evolution. Indeed, nacro-prismatic texture appears early in Cambrian molluscs and is still present in the shell of some bivalves, gastropods, cephalopods and very likely also, of some monoplacophorans. One key question is to know whether these shells are constructed from similar matrix protein assemblages, i.e. whether they share a common origin. Most of the molecular data published so far are restricted to two genera, the bivalve Pinctada and the gastropod Haliotis. The shell protein content of these two genera are clearly different, suggesting independent origins or considerable genetic drift from a common ancestor. In order to describe putatively conserved mollusc shell proteins, here we have investigated the SMP set of a new bivalve model belonging to another genera, the edible mussel Mytilus, using an up-to-date proteomic approach based on the interrogation of more than 70,000 EST sequences, recently available from NCBI public databases. We describe nine novel SMPs, among which three are completely novel, four are homologues of Pinctada SMPs and two are very likely homologues of Haliotis SMPs. This latter result constitutes the first report of conserved SMPs between bivalves and gastropods. More generally, our data suggest that mollusc SMP set may follow a mosaic pattern within the different mollusc models (Mytilus, Pinctada, Haliotis). We discuss the function of such proteins in calcifying matrices, the molecular evolution of SMP genes and the origin of mollusc nacro-prismatic SMPs.


ChemBioChem | 2011

Pmarg-Pearlin is a Matrix Protein Involved in Nacre Framework Formation in the Pearl Oyster Pinctada margaritifera

Caroline Montagnani; Benjamin Marie; Frédéric Marin; Corinne Belliard; F. Riquet; Alexandre Tayale; Isabelle Zanella-Cléon; E. Fleury; Yannick Gueguen; David Piquemal; Nathalie Cochennec-Laureau

The shell of pearl oysters is organized in multiple layers of CaCO3 crystallites packed together in an organic matrix. Relationships between the components of the organic matrix and mechanisms of nacre formation currently constitute the main focus of research into biomineralization. In this study, we characterized the pearlin protein from the oyster Pinctada margaritifera (Pmarg); this shares structural features with other members of a matrix protein family, N14/N16/pearlin. Pmarg pearlin exhibits calcium‐ and chitin‐binding properties. Pmarg pearlin transcripts are distinctively localized in the mineralizing tissue responsible for nacre formation. More specifically, we demonstrate that Pmarg pearlin is localized within the interlamellar matrix of nacre aragonite tablets. Our results support recent models for multidomain matrix protein involvement in nacreous layer formation. We provide evidence here for the existence of a conserved family of nacre‐associated proteins in Pteriidae, and reassess the evolutionarily conserved set of biomineralization genes related to nacre formation in this taxa.


FEBS Journal | 2013

The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties

Benjamin Marie; Daniel J. Jackson; Paula Ramos-Silva; Isabelle Zanella-Cléon; Nathalie Guichard; Frédéric Marin

Proteins that are occluded within the molluscan shell, the so‐called shell matrix proteins (SMPs), are an assemblage of biomolecules attractive to study for several reasons. They increase the fracture resistance of the shell by several orders of magnitude, determine the polymorph of CaCO3 deposited, and regulate crystal nucleation, growth initiation and termination. In addition, they are thought to control the shell microstructures. Understanding how these proteins have evolved is also likely to provide deep insight into events that supported the diversification and expansion of metazoan life during the Cambrian radiation 543 million years ago. Here, we present an analysis of SMPs isolated form the CaCO3 shell of the limpet Lottia gigantea, a gastropod that constructs an aragonitic cross‐lamellar shell. We identified 39 SMPs by combining proteomic analysis with genomic and transcriptomic database interrogations. Among these proteins are various low‐complexity domain‐containing proteins, enzymes such as peroxidases, carbonic anhydrases and chitinases, acidic calcium‐binding proteins and protease inhibitors. This list is likely to contain the most abundant SMPs of the shell matrix. It reveals the presence of both highly conserved and lineage‐specific biomineralizing proteins. This mosaic evolutionary pattern suggests that there may be an ancestral molluscan SMP set upon which different conchiferan lineages have elaborated to produce the diversity of shell microstructures we observe nowadays.


Aquatic Toxicology | 2012

Effects of a toxic cyanobacterial bloom (Planktothrix agardhii) on fish: Insights from histopathological and quantitative proteomic assessments following the oral exposure of medaka fish (Oryzias latipes)

Benjamin Marie; Hélène Huet; Arul Marie; Chakib Djediat; Simone Puiseux-Dao; Arnaud Catherine; Isabelle Trinchet; Marc Edery

Cyanobacterial toxic blooms often occur in freshwater lakes and constitute a potential health risk to human populations, as well as to fish and other aquatic organisms. Microcystin-LR (the cyanotoxin most commonly detected in the freshwater environment) is a potent hepatotoxin, deregulating the kinase pathway by inhibiting phosphatases 1 and 2A. Although toxicological effects have been clearly linked to the in vitro exposure of fish to purified microcystins, cyanotoxins are produced by the cyanobacteria together with numerous other potentially toxic molecules, and their overall and specific implications for the health of fish have still not been clearly established and remain puzzlingly difficult to assess. The medaka fish (Oryzias latipes) was chosen as an in vitro model for studying the effects of a cyanobacterial bloom on liver protein contents using a gel free quantitative approach, iTRAQ, in addition to pathology examinations on histological preparations. Fish were gavaged with 5 μL cyanobacterial extracts (Planktothrix agardhii) from a natural bloom (La Grande Paroisse, France) containing 2.5 μg equiv. MC-LR. 2h after exposure, the fish were sacrificed and livers were collected for analysis. Histological observations indicate that hepatocytes present glycogen storage loss, and cellular damages, together with immunological localization of MCs. Using a proteomic approach, 304 proteins were identified in the fish livers, 147 of them with a high degree of identification confidence. Fifteen of these proteins were statistically significantly different from those of controls (gavaged with water only). Overall, these protein regulation discrepancies clearly indicate that oxidative stress and lipid regulation had occurred in the livers of the exposed medaka fish. In contrast to previous pure microcystin-LR gavage experiments, marked induction of vitellogenin 1 protein was observed for the first time with a cyanobacterial extract. This finding was confirmed by ELISA quantification of vitellogenin liver content, suggesting that the Planktothrix bloom extract had induced the occurrence of an endocrine-disrupting effect.

Collaboration


Dive into the Benjamin Marie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arul Marie

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Séverine Le Manach

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Arnaud Catherine

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge