Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin P. Bratton is active.

Publication


Featured researches published by Benjamin P. Bratton.


Journal of Bacteriology | 2009

Cytoplasmic Protein Mobility in Osmotically Stressed Escherichia coli

Michael C. Konopka; Kem A. Sochacki; Benjamin P. Bratton; Irina A. Shkel; M. Thomas Record; James C. Weisshaar

Facile diffusion of globular proteins within a cytoplasm that is dense with biopolymers is essential to normal cellular biochemical activity and growth. Remarkably, Escherichia coli grows in minimal medium over a wide range of external osmolalities (0.03 to 1.8 osmol). The mean cytoplasmic biopolymer volume fraction ((phi)) for such adapted cells ranges from 0.16 at 0.10 osmol to 0.36 at 1.45 osmol. For cells grown at 0.28 osmol, a similar phi range is obtained by plasmolysis (sudden osmotic upshift) using NaCl or sucrose as the external osmolyte, after which the only available cellular response is passive loss of cytoplasmic water. Here we measure the effective axial diffusion coefficient of green fluorescent protein (D(GFP)) in the cytoplasm of E. coli cells as a function of (phi) for both plasmolyzed and adapted cells. For plasmolyzed cells, the median D(GFP) (D(GFP)(m)) decreases by a factor of 70 as (phi) increases from 0.16 to 0.33. In sharp contrast, for adapted cells, D(GFP)(m) decreases only by a factor of 2.1 as (phi) increases from 0.16 to 0.36. Clearly, GFP diffusion is not determined by (phi) alone. By comparison with quantitative models, we show that the data cannot be explained by crowding theory. We suggest possible underlying causes of this surprising effect and further experiments that will help choose among competing hypotheses. Recovery of the ability of proteins to diffuse in the cytoplasm after plasmolysis may well be a key determinant of the time scale of the recovery of growth.


Biophysical Journal | 2011

Subdiffraction-Limit Study of Kaede Diffusion and Spatial Distribution in Live Escherichia coli

Somenath Bakshi; Benjamin P. Bratton; James C. Weisshaar

Photoactivation localization microscopy (PALM) is used to study the spatial distribution and diffusion of single copies of the protein Kaede in the cytoplasm of live Escherichia coli under moderate growth conditions (67 min doubling time). The spatial distribution of Kaede is uniform within the cytoplasm. The cytoplasmic radius of 380 ± 30 nm varies little from cell to cell. Single-particle tracking using 4 ms exposure times reveals negatively curved plots of mean-square displacement versus time. A detailed comparison with Monte Carlo simulations in a spherocylindrical volume shows that the curvature can be quantitatively understood in terms of free diffusion within a confining volume. The mean diffusion coefficient across cells is = 7.3 ± 1.1 μm(2)·s(-1), consistent with a homotetrameric form of Kaede. The distribution of squared displacements along the long axis for individual Kaede molecules is consistent with homogeneous diffusion. However, for longer cells, a spatial map of one-step estimates of the diffusion coefficient along x suggests that diffusion is ∼20-40% faster within nucleoids than in the ribosome-rich region lying between nucleoid lobes at the cell mid-plane. Fluorescence recovery after photobleaching yielded = 8.3 ± 1.6 μm(2)·s(-1), in agreement with the single-particle tracking results.


Biophysical Journal | 2011

Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells.

Jagannath Mondal; Benjamin P. Bratton; D Yijie Li; Arun Yethiraj; James C. Weisshaar

In Escherichia coli, ribosomes concentrate near the cylindrical wall and at the endcaps, whereas the chromosomal DNA segregates in the more centrally located nucleoid. A simple statistical model recovers the observed ribosome-nucleoid segregation remarkably well. Plectonemic DNA is represented as a hyperbranched hard-sphere polymer, and multiple ribosomes that simultaneously translate the same mRNA strand (polysomes) are represented as freely jointed chains of hard spheres. There are no attractive interactions between particles, only excluded-volume effects. At realistic DNA and ribosome concentrations, segregation arises primarily from two effects: the DNA polymer avoids walls to maximize conformational entropy, and the polysomes occupy the empty space near the walls to maximize translational entropy. In this complex system, maximizing total entropy results in spatial organization of the components. Due to coupling of mRNA to DNA through RNA polymerase, the same entropic effects should favor the placement of highly expressed genes at the interface between the nucleoid and the ribosome-rich periphery. Such a placement would enable efficient cotranscriptional translation and facile transertion of membrane proteins into the cytoplasmic membrane. Finally, in the model, monofunctional DNA polymer beads representing the tips of plectonemes preferentially locate near the cylindrical wall. This suggests that initiation of transcription may occur preferentially near the ribosome-rich periphery.


Proceedings of the National Academy of Sciences of the United States of America | 2015

RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis

Randy M. Morgenstein; Benjamin P. Bratton; Jeffrey Nguyen; Nikolay Ouzounov; Joshua W. Shaevitz; Zemer Gitai

Significance The bacterial actin homolog, MreB, is a key determinant of rod-cell shape but the mechanism by which it functions has remained a topic of much debate. Recently it was shown that MreB exists as small polymers that actively rotate around the cell circumference. This rotation is widely conserved, yet its mechanism and function have remained unknown. Here we show that MreB rotates because cytoplasmic MreB filaments are coupled to periplasmic cell wall synthesis through the transmembrane protein RodZ, which acts as a transmembrane linker. Furthermore, by genetically uncoupling MreB rotation from growth we establish MreB rotation acts as a robustness mechanism for rod-like shape determination. This work thus explains the mystery of MreB rotation and suggests a new model for bacterial cell shape maintenance. The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress.


Applied and Environmental Microbiology | 2014

Nonperturbative imaging of nucleoid morphology in live bacterial cells during an antimicrobial peptide attack.

Somenath Bakshi; Heejun Choi; Nambirajan Rangarajan; Kenneth J. Barns; Benjamin P. Bratton; James C. Weisshaar

ABSTRACT Studies of time-dependent drug and environmental effects on single, live bacterial cells would benefit significantly from a permeable, nonperturbative, long-lived fluorescent stain specific to the nucleoids (chromosomal DNA). The ideal stain would not affect cell growth rate or nucleoid morphology and dynamics, even during laser illumination for hundreds of camera frames. In this study, time-dependent, single-cell fluorescence imaging with laser excitation and a sensitive electron-multiplying charge-coupled-device (EMCCD) camera critically tested the utility of “dead-cell stains” (SYTOX orange and SYTOX green) and “live-cell stains” (DRAQ5 and SYTO 61) and also 4′,6-diamidino-2-phenylindole (DAPI). Surprisingly, the dead-cell stains were nearly ideal for imaging live Escherichia coli, while the live-cell stains and DAPI caused nucleoid expansion and, in some cases, cell permeabilization and the halting of growth. SYTOX orange performed well for both the Gram-negative E. coli and the Gram-positive Bacillus subtilis. In an initial application, we used two-color fluorescence imaging to show that the antimicrobial peptide cecropin A destroyed nucleoid-ribosome segregation over 20 min after permeabilization of the E. coli cytoplasmic membrane, reminiscent of the long-term effects of the drug rifampin. In contrast, the human cathelicidin LL-37, while similar to cecropin A in structure, length, charge, and the ability to permeabilize bacterial membranes, had no observable effect on nucleoid-ribosome segregation. Possible underlying causes are suggested.


PLOS ONE | 2015

Simple Experimental Methods for Determining the Apparent Focal Shift in a Microscope System

Benjamin P. Bratton; Joshua W. Shaevitz

Three-dimensional optical microscopy is often complicated by a refractive index mismatch between the sample and objective lens. This mismatch causes focal shift, a difference between sample motion and focal-plane motion, that hinders the accuracy of 3D reconstructions. We present two methods for measuring focal shift using fluorescent beads of different sizes and ring-stained fluorescent beads. These simple methods are applicable to most situations, including total internal reflection objectives and samples very close to the interface. For distances 0–1.5 μm into an aqueous environment, our 1.49-NA objective has a relative focal shift of 0.57 ± 0.02, significantly smaller than the simple n 2/n 1 approximation of 0.88. We also expand on a previous sub-critical angle theory by means of a simple polynomial extrapolation. We test the validity of this extrapolation by measuring the apparent focal shift in samples where the refractive index is between 1.33 and 1.45 and with objectives with numerical apertures between 1.25 and 1.49.


Cell | 2018

How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction

Handuo Shi; Benjamin P. Bratton; Zemer Gitai; Kerwyn Casey Huang

Cell shape matters across the kingdoms of life, and cells have the remarkable capacity to define and maintain specific shapes and sizes. But how are the shapes of micron-sized cells determined from the coordinated activities of nanometer-sized proteins? Here, we review general principles that have surfaced through the study of rod-shaped bacterial growth. Imaging approaches have revealed that polymers of the actin homolog MreB play a central role. MreB both senses and changes cell shape, thereby generating a self-organizing feedback system for shape maintenance. At the molecular level, structural and computational studies indicate that MreB filaments exhibit tunable mechanical properties that explain their preference for certain geometries and orientations along the cylindrical cell body. We illustrate the regulatory landscape of rod-shape formation and the connectivity between cell shape, cell growth, and other aspects of cell physiology. These discoveries provide a framework for future investigations into the architecture and construction of microbes.


bioRxiv | 2017

RodZ promotes MreB polymer formation and curvature localization to determine the cylindrical uniformity of E. coli shape

Randy M Morgenstein; Benjamin P. Bratton; Joshua W. Shaevitz; Zemer Gitai

Cell shape in bacteria is determined by the cell wall, which is synthesized by a variety of proteins whose actions are coordinated by the actin-like MreB protein. MreB uses local geometric cues of envelope curvature to avoid the cell poles and localize to specific regions of the cell body. However, it remains unclear whether MreB’s curvature preference is regulated by additional factors, and which features of MreB are essential for specific aspects of rod shape growth, such as cylindrical uniformity. Here we show that in addition to its previously-described role in mediating MreB motion, RodZ also modulates MreB polymer number and curvature preference. MreB polymer number and curvature localization can be regulated independently. Quantitative 3D measurements and a series of mutant strains show that among various properties of MreB, polymer number, total length of MreB polymers, and MreB curvature preference are the key determinants of cylindrical uniformity, a measure of the variability in radius within a single cell. Changes in the values of these parameters are highly predictive of the resulting changes in cell shape (r2=0.93). Our data suggest a model for rod shape in which RodZ promotes the assembly of multiple long MreB polymers that ensure the growth of a uniform cylinder.


Nature microbiology | 2018

A gated relaxation oscillator mediated by FrzX controls morphogenetic movements in Myxococcus xanthus

Mathilde Guzzo; Seán M. Murray; Eugénie Martineau; Sébastien Lhospice; Grégory Baronian; Laetitia My; Yong Zhang; Leon Espinosa; Renaud Vincentelli; Benjamin P. Bratton; Joshua W. Shaevitz; Virginie Molle; Martin Howard; Tâm Mignot

Dynamic control of cell polarity is of critical importance for many aspects of cellular development and motility. In Myxococcus xanthus, MglA, a G protein, and MglB, its cognate GTPase-activating protein, establish a polarity axis that defines the direction of movement of the cell and that can be rapidly inverted by the Frz chemosensory system. Although vital for collective cell behaviours, how Frz triggers this switch has remained unknown. Here, we use genetics, imaging and mathematical modelling to show that Frz controls polarity reversals via a gated relaxation oscillator. FrzX, which we identify as a target of the Frz kinase, provides the gating and thus acts as the trigger for reversals. Slow relocalization of the polarity protein RomR then creates a refractory period during which another switch cannot be triggered. A secondary Frz output, FrzZ, decreases this delay, allowing rapid reversals when required. Thus, this architecture results in a highly tuneable switch that allows a wide range of reversal frequencies.A combination of genetics, microscopy and modelling identifies FrzX as a target of the Frz kinase that controls cell polarity in Myxococcus xanthus by serving as a gate that regulates the MglA–MglB–RomR relaxation oscillator.


Nature Communications | 2018

MreB polymers and curvature localization are enhanced by RodZ and predict E. coli' s cylindrical uniformity

Benjamin P. Bratton; Joshua W. Shaevitz; Zemer Gitai; Randy M. Morgenstein

The actin-like protein MreB has been proposed to coordinate the synthesis of the cell wall to determine cell shape in bacteria. MreB is preferentially localized to areas of the cell with specific curved geometries, avoiding the cell poles. It remains unclear whether MreB’s curvature preference is regulated by additional factors, and which specific features of MreB promote specific features of rod shape growth. Here, we show that the transmembrane protein RodZ modulates MreB curvature preference and polymer number in E. coli, properties which are regulated independently. An unbiased machine learning analysis shows that MreB polymer number, the total length of MreB polymers, and MreB curvature preference are key correlates of cylindrical uniformity, the variability in radius within a single cell. Changes in the values of these parameters are highly predictive of the resulting changes in cell shape (r2 = 0.93). Our data thus suggest RodZ promotes the assembly of geometrically-localized MreB polymers that lead to the growth of uniform cylinders.The actin-like protein MreB coordinates the synthesis of the cell wall, which determines cell shape in bacteria. Here, Bratton et al. show that the transmembrane protein RodZ modulates MreB polymer number and curvature preference, contributing to the cylindrical uniform shape of E. coli cells.

Collaboration


Dive into the Benjamin P. Bratton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James C. Weisshaar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Somenath Bakshi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kem A. Sochacki

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge