Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Rabe is active.

Publication


Featured researches published by Benjamin Rabe.


Science | 2013

Export of algal biomass from the melting Arctic Sea ice

Antje Boetius; Sebastian Albrecht; Karel Bakker; Christina Bienhold; Janine Felden; Mar Fernández-Méndez; Stefan Hendricks; Christian Katlein; Catherine Lalande; Thomas Krumpen; Marcel Nicolaus; Ilka Peeken; Benjamin Rabe; Antonina Rogacheva; Elena Rybakova; Raquel Somavilla; Frank Wenzhöfer

Diatom Fall 2012 saw the greatest Arctic ice minimum ever recorded. This allowed unprecedented access for research vessels deep into the Arctic Ocean to make high-latitude observations of ice melt and associated phenomena. From the RV Polarstern between 84° to 89° North, Boetius et al. (p. 1430, published online 14 February; see the cover) observed large-scale algal aggregates of the diatom Melosira arctica hanging beneath multiyear and seasonal ice across a wide range of latitudes. The strands of algae were readily dislodged and formed aggregates on the seabed up to 4400 meters below, where the algae are consumed by large mobile invertebrates, such as sea cucumbers and brittle stars. Although Nansen observed sub-ice algae in the Arctic 100 years ago, the extent of this bloom phenomenon was unknown. The dynamics of such blooms must impinge on global carbon budgets, but how the dynamics will change as ice melt becomes more extensive remains unclear. As polar ice retreated in 2012, it left evidence of large algal deposits in its wake. In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.


Geophysical Research Letters | 2014

Arctic Ocean basin liquid freshwater storage trend 1992–2012

Benjamin Rabe; Michael Karcher; Frank Kauker; Ursula Schauer; John M. Toole; Richard A. Krishfield; Sergey Pisarev; Takashi Kikuchi; Jie Su

Freshwater in the Arctic Ocean plays an important role in the regional ocean circulation, sea ice, and global climate. From salinity observed by a variety of platforms, we are able, for the first time, to estimate a statistically reliable liquid freshwater trend from monthly gridded fields over all upper Arctic Ocean basins. From 1992 to 2012 this trend was 600±300 km3 yr−1. A numerical model agrees very well with the observed freshwater changes. A decrease in salinity made up about two thirds of the freshwater trend and a thickening of the upper layer up to one third. The Arctic Ocean Oscillation index, a measure for the regional wind stress curl, correlated well with our freshwater time series. No clear relation to Arctic Oscillation or Arctic Dipole indices could be found. Following other observational studies, an increased Bering Strait freshwater import to the Arctic Ocean, a decreased Davis Strait export, and enhanced net sea ice melt could have played an important role in the freshwater trend we observed.


Journal of Geophysical Research | 2012

The freshwater composition of the Fram Strait outflow derived from a decade of tracer measurements

Paul A. Dodd; Benjamin Rabe; Edmond Hansen; Eva Falck; Andreas Mackensen; Eelco J. Rohling; Colin A. Stedmon; Svein Kristiansen

The composition of the Fram Strait freshwater outflow is investigated by comparing 10 sections of concurrent salinity, ?18O, nitrate and phosphate measurements collected between 1997 and 2011. The largest inventories of net sea ice meltwater are found in 2009, 2010 and 2011. The 2009–2011 sections are also the first to show positive fractions of sea ice meltwater at the surface near the core of the EGC. Sections from September 2009–2011 show an increased input of sea ice meltwater at the surface relative to older September sections. This suggests that more sea ice now melts back into the surface in late summer than previously. Comparison of April, July and September sections reveals seasonal variations in the inventory of positive sea ice meltwater, with maximum inventories in September sections. The time series of sections reveals a strong anti-correlation between meteoric water and net sea ice meltwater inventories, suggesting that meteoric water and brine may be delivered to Fram Strait together from a common source. We find that the freshwater outflow at Fram Strait exhibits a similar meteoric water to net sea ice meltwater ratio as the central Arctic Ocean and Siberian shelves, suggesting that much of the sea ice meltwater and meteoric water at Fram Strait may originate from these regions. However, we also find that the ratio of meteoric water to sea ice meltwater inventories at Fram Strait is decreasing with time, due to an increased surface input of sea ice meltwater in recent sections.


Journal of Geophysical Research | 2014

The influence of sea-ice cover on air-sea gas exchange estimated with radon-222 profiles

Michiel M Rutgers van der Loeff; Nicolas Cassar; Marcel Nicolaus; Benjamin Rabe; Ingrid Stimac

Air-sea gas exchange plays a key role in the cycling of greenhouse and other biogeochemically important gases. Although air-sea gas transfer is expected to change as a consequence of the rapid decline in summer Arctic sea ice cover, little is known about the effect of sea ice cover on gas exchange fluxes, especially in the marginal ice zone. During the Polarstern expedition ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean, we compared 222Rn/226Ra ratios in the upper 50 m of 14 ice-covered and 4 ice-free stations. At three of the ice-free stations, we find 222Rn-based gas transfer coefficients in good agreement with expectation based on published relationships between gas transfer and wind speed over open water when accounting for wind history from wind reanalysis data. We hypothesize that the low gas transfer rate at the fourth station results from reduced fetch due to the proximity of the ice edge, or lateral exchange across the front at the ice edge by restratification. No significant radon deficit could be observed at the ice-covered stations. At these stations, the average gas transfer velocity was less than 0.1 m/d (97.5% confidence), compared to 0.5–2.2 m/d expected for open water. Our results show that air-sea gas exchange in an ice-covered ocean is reduced by at least an order of magnitude compared to open water. In contrast to previous studies, we show that in partially ice-covered regions, gas exchange is lower than expected based on a linear scaling to percent ice cover.


Journal of Geophysical Research | 2015

Kara Sea freshwater transport through Vilkitsky Strait: Variability, forcing, and further pathways toward the western Arctic Ocean from a model and observations

Markus Janout; Yevgeny Aksenov; Jens Hölemann; Benjamin Rabe; Ursula Schauer; Igor V. Polyakov; Sheldon Bacon; Andrew C. Coward; Michael Karcher; Yueng-Djern Lenn; Heidemarie Kassens; Leonid Timokhov

Siberian river water is a first-order contribution to the Arctic freshwater budget, with the Ob, Yenisey, and Lena supplying nearly half of the total surface freshwater flux. However, few details are known regarding where, when, and how the freshwater transverses the vast Siberian shelf seas. This paper investigates the mechanism, variability, and pathways of the fresh Kara Sea outflow through Vilkitsky Strait toward the Laptev Sea. We utilize a high-resolution ocean model and recent shipboard observations to characterize the freshwater-laden Vilkitsky Strait Current (VSC), and shed new light on the little-studied region between the Kara and Laptev Seas, characterized by harsh ice conditions, contrasting water masses, straits, and a large submarine canyon. The VSC is 10–20 km wide, surface intensified, and varies seasonally (maximum from August to March) and interannually. Average freshwater (volume) transport is 500 ± 120 km3 a−1 (0.53 ± 0.08 Sv), with a baroclinic flow contribution of 50–90%. Interannual transport variability is explained by a storage-release mechanism, where blocking-favorable summer winds hamper the outflow and cause accumulation of freshwater in the Kara Sea. The year following a blocking event is characterized by enhanced transports driven by a baroclinic flow along the coast that is set up by increased freshwater volumes. Eventually, the VSC merges with a slope current and provides a major pathway for Eurasian river water toward the western Arctic along the Eurasian continental slope. Kara (and Laptev) Sea freshwater transport is not correlated with the Arctic Oscillation, but rather driven by regional summer pressure patterns.


Scientific Reports | 2015

Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean

Lars-Eric Heimbürger; Jeroen E. Sonke; Daniel Cossa; David Point; Christelle Lagane; Laure Laffont; Benjamin T Galfond; Marcel Nicolaus; Benjamin Rabe; Michiel M Rutgers van der Loeff

Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79–90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81–85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150–200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.


Geophysical Research Letters | 2016

Episodic warming of near-bottom waters under the Arctic sea ice on the central Laptev Sea shelf

Markus Janout; Jens Hölemann; Bennet Juhls; Thomas Krumpen; Benjamin Rabe; Dorothea Bauch; Carolyn Wegner; Heidemarie Kassens; Leonid Timokhov

A multiyear mooring record (2007–2014) and satellite imagery highlight the strong temperature variability and unique hydrographic nature of the Laptev Sea. This Arctic shelf is a key region for river discharge and sea ice formation and export and includes submarine permafrost and methane deposits, which emphasizes the need to understand the thermal variability near the seafloor. Recent years were characterized by early ice retreat and a warming near-shore environment. However, warming was not observed on the deeper shelf until year-round under-ice measurements recorded unprecedented warm near-bottom waters of +0.6°C in winter 2012/2013, just after the Arctic sea ice extent featured a record minimum. In the Laptev Sea, early ice retreat in 2012 combined with Lena River heat and solar radiation produced anomalously warm summer surface waters, which were vertically mixed, trapped in the pycnocline, and subsequently transferred toward the bottom until the water column cooled when brine rejection eroded stratification.


EPIC3Bulletin of the American Meteorological Society, American Meteorological Society ; Allen Press, 92(6), pp. S145-S148, ISSN: 0003-0007 | 2011

[the Arctic] Ocean [in: State of the Climate in 2010]

Andrey Proshutinsky; Mary-Louise Timmermans; Igor Ashik; A. Beszczynska-Moeller; Eddy C. Carmack; I. Frolov; Motoyo Itoh; Takashi Kikuchi; Richard A. Krishfield; Fiona A. McLaughlin; Shigeto Nishino; Benjamin Rabe; Ursula Schauer; Koji Shimada; V. Sokolov; Michael Steele; John M. Toole; William J. Williams; Rebecca A. Woodgate; M. Yamamoto-Kawai; Sarah Zimmermann

Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of each month of the year) excluding Greenland and Antarctica. The two figures show that 2010 was the driest year since 2003. The drought in the Amazon was largely responsible, but an excess of water in 2009 seems to have buffered that drought to some extent. The drying trend in the 25-55 deg S zone is a combination of Patagonian glacier melt and drought in parts of Australia.Several large-scale climate patterns influenced climate conditions and weather patterns across the globe during 2010. The transition from a warm El Nino phase at the beginning of the year to a cool La Nina phase by July contributed to many notable events, ranging from record wetness across much of Australia to historically low Eastern Pacific basin and near-record high North Atlantic basin hurricane activity. The remaining five main hurricane basins experienced below- to well-below-normal tropical cyclone activity. The negative phase of the Arctic Oscillation was a major driver of Northern Hemisphere temperature patterns during 2009/10 winter and again in late 2010. It contributed to record snowfall and unusually low temperatures over much of northern Eurasia and parts of the United States, while bringing above-normal temperatures to the high northern latitudes. The February Arctic Oscillation Index value was the most negative since records began in 1950. The 2010 average global land and ocean surface tem...


PLOS ONE | 2018

High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

Rafael Gonçalves-Araujo; Benjamin Rabe; Ilka Peeken; Astrid Bracher

As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean into bio-optical provinces will help to develop and then select province-specific ocean color algorithms.


EPIC3Bulletin of the American Meteorological Society, American Meteorological Society ; Allen Press, 94(8), pp. S128-S130, ISSN: 0003-0007 | 2013

[the Arctic] Ocean temperature and salinity [in: State of the Climate in 2012]

Mary-Louise Timmermans; Igor Ashik; Y. Cao; Ivan E. Frolov; Randi Ingvaldsen; Takashi Kikuchi; Richard A. Krishfield; Harald Loeng; Shigeto Nishino; Robert S. Pickart; Benjamin Rabe; I. Semiletov; Ursula Schauer; Peter Schlosser; N. Shakhova; William M. Smethie; Vladimir T. Sokolov; Michael Steele; Jie Su; John M. Toole; William J. Williams; Rebecca A. Woodgate; J. Zhao; W. Zhong; S. Zimmerman

Special supplement to the Bulletin of the American Meteorological Society vol.94, No. 8, August 2013

Collaboration


Dive into the Benjamin Rabe's collaboration.

Top Co-Authors

Avatar

Ursula Schauer

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Hoppmann

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Christian Katlein

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Michael Karcher

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Andreas Wisotzki

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Thomas Krumpen

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Janout

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge