Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin S. Elkin is active.

Publication


Featured researches published by Benjamin S. Elkin.


Annual Review of Biomedical Engineering | 2011

In Vitro Models of Traumatic Brain Injury

Barclay Morrison; Benjamin S. Elkin; Jean-Pierre Dollé; Martin L. Yarmush

In vitro models of traumatic brain injury (TBI) are helping elucidate the pathobiological mechanisms responsible for dysfunction and delayed cell death after mechanical stimulation of the brain. Researchers have identified compounds that have the potential to break the chain of molecular events set in motion by traumatic injury. Ultimately, the utility of in vitro models in identifying novel therapeutics will be determined by how closely the in vitro cascades recapitulate the sequence of cellular events that play out in vivo after TBI. Herein, the major in vitro models are reviewed, and a discussion of the physical injury mechanisms and culture preparations is employed. A comparison between the efficacy of compounds tested in vitro and in vivo is presented as a critical evaluation of the fidelity of in vitro models to the complex pathobiology that is TBI. We conclude that in vitro models were greater than 88% predictive of in vivo results.


Journal of Biomechanical Engineering-transactions of The Asme | 2009

Age-dependent regional mechanical properties of the rat hippocampus and cortex.

Benjamin S. Elkin; Ashok Ilankovan; Barclay Morrison

Age-dependent outcomes following traumatic brain injury motivate the study of brain injury biomechanics in experimental animal models at different stages of development. Finite element models of the rat brain are used to better understand the mechanical mechanisms behind these age-dependent outcomes; however, age- and region-specific rat brain tissue mechanical properties are required for biofidelity in modeling. Here, we have used the atomic force microscope (AFM) to measure region-dependent mechanical properties for subregions of the cortex and hippocampus in P10, P17, and adult rats. Apparent elastic modulus increased nonlinearly with indentation strain, and a nonlinear Ogden hyperelastic model was used to fit the force-deflection data. Subregional heterogeneous distributions of mechanical properties changed significantly with age. Apparent elastic modulus was also found to increase overall with age, increasing by >100% between P10 and adult rats. Unconfined compression tests (epsilon=-0.3) were performed on whole slices of the hippocampus and cortex of P10, P17, and adult rats to verify the mechanical properties measured with the AFM. Mean apparent elastic modulus at an indentation strain of 30% from AFM measurements for each region and age correlated well with the long-term elastic modulus measured from 30% unconfined compression tests (slope not significantly different from 1, p>0.05). Protein, lipid, and sulfated glycosaminoglycan content of the brain increased with age and were positively correlated with tissue stiffness, whereas water content decreased with age and was negatively correlated with tissue stiffness. These correlations can be used to hypothesize mechanistic models for describing the mechanical behavior of brain tissue as well as to predict relative differences between brain tissue mechanical properties of other species, at different ages, and for different regions based on differences in tissue composition.


Journal of Neurotrauma | 2011

A Detailed Viscoelastic Characterization of the P17 and Adult Rat Brain

Benjamin S. Elkin; Ashok Ilankovan; Barclay Morrison

Brain is a morphologically and mechanically heterogeneous organ. Although rat brain is commonly used as an experimental neurophysiological model for various in vivo biomechanical studies, little is known about its regional viscoelastic properties. To address this issue, we have generated viscoelastic mechanical property data for specific anatomical regions of the P17 and adult rat brain. These ages are commonly used in rat experimental models. We measured mechanical properties of both white and gray matter regions in coronal slices with a custom-designed microindentation device performing stress-relaxation indentations to 10% effective strain. Shear moduli calculated for short (100?ms), intermediate (1?sec), and long (20?sec) time points, ranged from ?1?kPa for short term moduli to ?0.4?kPa for long term moduli. Both age and anatomic region were significant factors affecting the time-dependent shear modulus. White matter regions and regions of the cerebellum were much more compliant than those of the hippocampus, cortex, and thalamus. Linear viscoelastic models (Prony series, continuous phase lag, and a power law model) were fit to the time-dependent shear modulus data. All models fit the data equally with no significant differences between them (F-test; p>0.05). The F-test was also used to statistically determine that a Prony series with three time-dependent parameters accurately fit the data with no added benefit from additional terms. The age- and region-dependent rat brain viscoelastic properties presented here will help inform future biomechanical models of the rat brain with specific and accurate regional mechanical property data.


Journal of Biomechanical Engineering-transactions of The Asme | 2011

Dynamic, Regional Mechanical Properties of the Porcine Brain: Indentation in the Coronal Plane

Benjamin S. Elkin; Ashok Ilankova; Barclay Morrison

Stress relaxation tests using a custom designed microindentation device were performed on ten anatomic regions of fresh porcine brain (postmortem time <3 h). Using linear viscoelastic theory, a Prony series representation was used to describe the shear relaxation modulus for each anatomic region tested. Prony series parameters fit to load data from indentations performed to ∼10% strain differed significantly by anatomic region. The gray and white matter of the cerebellum along with corpus callosum and brainstem were the softest regions measured. The cortex and hippocampal CA1/CA3 were found to be the stiffest. To examine the large strain behavior of the tissue, multistep indentations were performed in the corona radiata to strains of 10%, 20%, and 30%. Reduced relaxation functions were not significantly different for each step, suggesting that quasi-linear viscoelastic theory may be appropriate for representing the nonlinear behavior of this anatomic region of porcine brain tissue. These data, for the first time, describe the dynamic and short time scale behavior of multiple anatomic regions of the porcine brain which will be useful for understanding porcine brain injury biomechanics at a finer spatial resolution than previously possible.


Annals of Biomedical Engineering | 2012

Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age

John D. Finan; Benjamin S. Elkin; Erica M. Pearson; Irene L. Kalbian; Barclay Morrison

Rat is the most commonly used animal model for the study of traumatic brain injury. Recent advances in imaging and computational modeling technology offer the promise of biomechanical models capable of resolving individual brain structures and offering greater insight into the causes and consequences of brain injury. However, there is insufficient data on the mechanical properties of brain structures available to populate these models. In this study, we used microindentation to determine viscoelastic properties of different anatomical structures in sagittal slices of juvenile and adult rat brain. We find that the rat brain is spatially heterogeneous in this anatomical plane supporting previous results in the coronal plane. In addition, the brain becomes stiffer and more heterogeneous as the animal matures. This dynamic, region-specific data will support the development of more biofidelic computational models of brain injury biomechanics and the testing of hypotheses about the manner in which different anatomical structures are injured in a head impact.


Philosophical Transactions of the Royal Society A | 2010

Fixed negative charge and the Donnan effect: a description of the driving forces associated with brain tissue swelling and oedema

Benjamin S. Elkin; Mohammed A. Shaik; Barclay Morrison

Cerebral oedema or brain tissue swelling is a significant complication following traumatic brain injury or stroke that can increase the intracranial pressure (ICP) and impair blood flow. Here, we have identified a potential driver of oedema: the negatively charged molecules fixed within cells. This fixed charge density (FCD), once exposed, could increase ICP through the Donnan effect. We have shown that metabolic processes and membrane integrity are required for concealing this FCD as slices of rat cortex swelled immediately (within 30 min) following dissection if treated with 2 deoxyglucose + cyanide (2DG+CN) or Triton X-100. Slices given ample oxygen and glucose, however, did not swell significantly. We also found that dead brain tissue swells and shrinks in response to changes in ionic strength of the bathing medium, which suggests that the Donnan effect is capable of pressurizing and swelling brain tissue. As predicted, a non-ionic osmolyte, 1,2 propanediol, elicited no volume change at 2000×10−3 osmoles l−1 (Osm). Swelling data were well described by triphasic mixture theory with the calculated reference state FCD similar to that measured with a 1,9 dimethylmethylene blue assay. Taken together, these data suggest that intracellular fixed charges may contribute to the driving forces responsible for brain swelling.


Journal of Neurotrauma | 2013

Why is CA3 more vulnerable than CA1 in experimental models of controlled cortical impact-induced brain injury?

Haojie Mao; Benjamin S. Elkin; Vinay V. Genthikatti; Barclay Morrison; King H. Yang

One interesting finding of controlled cortical impact (CCI) experiments is that the CA3 region of the hippocampus, which is positioned further from the impact than the CA1 region, is reported as being more injured. The current literature has suggested a positive correlation between brain tissue stretch and neuronal cell loss. However, it is counterintuitive to assume that CA3 is stretched more during CCI injury. Recent mechanical studies of the brain have reported on a level of spatial heterogeneity not previously appreciated-the finding that CA1 was significantly stiffer than all other regions tested and that CA3 was one of the most compliant. We hypothesized that mechanical heterogeneity of anatomical structures could underlie the proposed heterogeneous mechanical response and hence the pattern of cell death. As such, we developed a three-dimensional finite element (FE) rat brain model representing detailed hippocampal structures and simulated various CCI experiments. Four groups of material properties based on recent experiments were tested. In group 1, hyperelastic material properties were assigned to various hippocampal structures, with CA3 more compliant than CA1. In group 2, linear viscoelastic material properties were assigned to hippocampal structures, with CA3 more compliant than CA1. In group 3, the hippocampus was represented by homogenous linear viscoelastic material properties. In group 4, a homogeneous nonlinear hippocampus was adopted. Simulation results demonstrated that for CCI with a 5-mm diameter, flat shape impactor, CA3 experienced increased tensile strains over a larger area and to a greater magnitude than did CA1 for group 1, which best explained why CA3 is more sensitive to CCI injury. However, for groups 2-4, the total volume with high strain (>30%) in CA3 was smaller than that in CA1. The FE rat brain model, with detailed hippocampal structures presented here, will help to engineer desired experimental neurotrauma models by virtually characterizing brain biomechanics before testing.


Acta Biomaterialia | 2017

Regional mechanical properties of human brain tissue for computational models of traumatic brain injury

John D. Finan; Sowmya N. Sundaresh; Benjamin S. Elkin; Guy M. McKhann; Barclay Morrison

To determine viscoelastic shear moduli, stress relaxation indentation tests were performed on samples of human brain tissue resected in the course of epilepsy surgery. Through the use of a 500µm diameter indenter, regional mechanical properties were measured in cortical grey and white matter and subregions of the hippocampus. All regions were highly viscoelastic. Cortical grey matter was significantly more compliant than the white matter or hippocampus which were similar in modulus. Although shear modulus was not correlated with the age of the donor, cortex from male donors was significantly stiffer than from female donors. The presented material properties will help to populate finite element models of the brain as they become more anatomically detailed. STATEMENT OF SIGNIFICANCE We present the first mechanical characterization of fresh, post-operative human brain tissue using an indentation loading mode. Indentation generates highly localized data, allowing structure-specific mechanical properties to be determined from small tissue samples resected during surgery. It also avoids pitfalls of cadaveric tissue and allows data to be collected before degenerative processes alter mechanical properties. To correctly predict traumatic brain injury, finite element models must calculate intracranial deformation during head impact. The functional consequences of injury depend on the anatomical structures injured. Therefore, morbidity depends on the distribution of deformation across structures. Accurate prediction of structure-specific deformation requires structure-specific mechanical properties. This data will facilitate deeper understanding of the physical mechanisms that lead to traumatic brain injury.


Journal of Neurotrauma | 2011

Chondroitinase ABC Reduces Brain Tissue Swelling In Vitro

Benjamin S. Elkin; Mohammed A. Shaik; Barclay Morrison

Increased intracranial pressure (ICP) caused by edema following severe traumatic brain injury (TBI) or stroke contributes to high rates of mortality and morbidity. The search continues for more effective treatments that target the edema that contributes to increased ICP. We previously described the effect of the fixed charge density (FCD) of brain on its swelling behavior according to the Donnan effect. Here we show that reduction of brain tissue FCD is an effective means of reducing brain tissue swelling and edema in rat and porcine cortical brain tissue in vitro. The effect of enzymes directed at digesting candidate contributors to cellular FCD such as chondroitin sulfate proteoglycans (CSPGs), heparin sulfate proteoglycans (HSPGs), and DNA was examined in slices of the adult rat cortex. All enzymes were capable of decreasing FCD in the tissue by ?20%, and reducing tissue swelling over a 24?h period following dissection from ?60% to ?30%. Chondroitinase ABC (ChABC) was most effective at reducing dead brain tissue swelling in response to changes in ionic osmotic environments. ChABC reduced swelling in live slices of tissue even within the first 2?h following dissection. It also significantly reduced the FCD, initial tissue swelling, and volume change in response to hypotonic bathing solution in porcine cortical brain tissue. The use of ChABC to reduce tissue FCD may be an effective method for reducing brain edema and controlling ICP following injury.


international conference of the ieee engineering in medicine and biology society | 2009

Quantification of functional aalterations after in vitro traumatic brain injury

Zhe Yu; Benjamin S. Elkin; Barclay Morrison

Traumatic brain injury (TBI) is caused by mechanical forces, producing tissue deformation at the moment of injury. Complex cellular, neurochemical and metabolic alterations are initiated by the deformation and result in delayed cell death and dysfunction. Using an in vitro model of TBI based on organotypic brain slice cultures, we have quantitatively studied the relationship between tissue deformation and functional outcome. Specifically, we studied the effects of low levels of tissue deformation on the functional outcomes as measured by electrophysiology recordings. In response to 5% and 10% biaxial Lagrangian strain, the maximal evoked response and the excitability of neural networks were found to be decreased. Additionally, the different anatomic subregions of the hippocampus displayed different levels of impairment to the injuries. These results suggest that the network function was affected by low levels of applied strain which induced minimal cell death in previous studies.

Collaboration


Dive into the Benjamin S. Elkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evren U. Azeloglu

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Kevin D. Costa

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Zhe Yu

Columbia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy M. McKhann

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Haojie Mao

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge