Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Sultan is active.

Publication


Featured researches published by Benjamin Sultan.


Journal of Climate | 2003

The West African Monsoon Dynamics. Part II: The “Preonset” and “Onset” of the Summer Monsoon

Benjamin Sultan; Serge Janicot

The arrival of the summer monsoon over West Africa has been documented by using daily gridded rainfall data and NCEP‐NCAR reanalyses during the period 1968‐90, and OLR data over the period 1979‐90. Two steps have been characterized through a composite approach: the preonset and the onset of the summer monsoon. The preonset stage corresponds to the arrival in the intertropical front (ITF) at 15 8N, that is, the confluence line between moist southwesterly monsoon winds and dry northeasterly Harmattan, bringing sufficient moisture for isolated convective systems to develop in the Sudano‐Sahelian zone while the intertropical convergence zone (ITCZ) is centered at 58N. The mean date for the preonset occurrence is 14 May and its standard deviation is 9.5 days during the period 1968‐90. This leads to a first clear increase of the positive rainfall slope corresponding to the beginning of the rainy season over this Sudano‐Sahelian area. The onset stage of the summer monsoon over West Africa is linked to an abrupt latitudinal shift of the ITCZ from a quasi-stationary location at 58N in May‐June to another quasi-stationary location at 108N in July‐August. The mean date for the onset occurrence is 24 June and its standard deviation is 8 days during the period 1968‐ 90. This leads to a second increase of the positive rainfall slope over the Sudano‐Sahelian zone signing the northernmost location of the ITCZ and the beginning of the monsoon season. This abrupt shift occurs mostly between 108W and 58E, where a meridional land‐sea contrast exists, and it is characterized by a temporary rainfall and convection decrease over West Africa. Preonset dates, onset dates, and summer rainfall amount over the Sahel are uncorrelated during the period 1968‐90. The atmospheric dynamics associated with the abrupt ITCZ shift has been investigated. Between the preonset and the onset stages, the heat low dynamics associated with the ITF controls the circulation in the low and midlevels. Its meridional circulation intensity is the highest at the beginning of the monsoon onset. This can lead to 1) increased convective inhibition in the ITCZ through intrusion of dry and subsiding air from the north, and 2) increased potential instability through a greater inland moisture advection and a higher monsoon depth induced by a stronger cyclonic circulation in the low levels, through higher vertical wind shear due to westerly monsoon wind and midlevel African easterly jet (AEJ) increases, through enhancement of the instability character of the AEJ, and through increased shortwave radiation received at the surface. During the monsoon onset, once the rainfall minimum occurred due to the convective inhibition, the accumulated potential instability breaks the convective inhibition, the inertial instability of the monsoon circulation is released, and the associated regionalscale circulation increases, leading to the abrupt shift of the ITCZ. Then the ITCZ moves north up to 108N, where thermodynamical conditions are favorable. It is suggested by the authors that the abrupt shift of the ITCZ, initiated by the amplification of the heat low dynamics, could be due to an interaction with the northern orography of the Atlas‐Ahaggar Mountains. Subsidence over and north of this orography, due to both the northern branches of the heat low and of the northern Hadleytype cell, contributes to enhance the high geopotentials north of these mountains and the associated northeasterly winds. This leads to the development of a leeward trough that reinforces the heat low dynamics, maintaining an active convective ITCZ through enhanced moist air advection from the ocean, increasing the northern Hadley circulation, which reinforces the high geopotentials and the interaction with the orography through a positive feedback. The fact that an abrupt shift of the ITCZ is only observed on the western part of West Africa may result from the enhancement of moisture advection, which comes from the west and has a stronger impact west of the Greenwich meridian. The northwest‐southeast orientation of the Atlas‐Ahaggar crest can induce the interaction with the heat low, first in the east where the mountains are nearer to the ITF than in the west, and second in the west. Another consequence of the possible orography-induced interaction with the atmospheric circulation is that the induced leeward trough, increasing the cyclonic vorticity in the heat low, may stimulate moisture convergence in the oceanic ITCZ near the western coast of West Africa.


Geophysical Research Letters | 2000

Abrupt shift of the ITCZ over West Africa and intra‐seasonal variability

Benjamin Sultan; Serge Janicot

The onset of the monsoon system over West Africa is linked to the northward migration of the Inter-Tropical Convergence Zone (ITCZ) during the northern spring and summer. By using daily gridded rainfall data and NCEP/NCAR wind reanalyses over the period 1968–1990, we show that this migration is characterised by an abrupt latitudinal shift of the ITCZ in late June from a quasi-stationary location at 5N in May–June to another quasi-stationary location at 10N in July–August. A composite analysis based on the shift dates shows that this northward shift is associated with the occurrence of a westward-travelling monsoon depression pattern over the Sahel with characteristic periodicities of 20–40 days.


PLOS Medicine | 2005

Climate drives the meningitis epidemics onset in west Africa.

Benjamin Sultan; Karima Labadi; Jean-François Guégan; Serge Janicot

Background Every year West African countries within the Sahelo-Sudanian band are afflicted with major meningococcal meningitis (MCM) disease outbreaks, which affect up to 200,000 people, mainly young children, in one of the worlds poorest regions. The timing of the epidemic year, which starts in February and ends in late May, and the spatial distribution of disease cases throughout the “Meningitis Belt” strongly indicate a close linkage between the life cycle of the causative agent of MCM and climate variability. However, mechanisms responsible for the observed patterns are still not clearly identified. Methods and Findings By comparing the information on cases and deaths of MCM from World Health Organization weekly reports with atmospheric datasets, we quantified the relationship between the seasonal occurrence of MCM in Mali, a West African country, and large-scale atmospheric circulation. Regional atmospheric indexes based on surface wind speed show a clear link between population dynamics of the disease and climate: the onset of epidemics and the winter maximum defined by the atmospheric index share the same mean week (sixth week of the year; standard deviation, 2 wk) and are highly correlated. Conclusions This study is the first that provides a clear, quantitative demonstration of the connections that exist between MCM epidemics and regional climate variability in Africa. Moreover, this statistically robust explanation of the MCM dynamics enables the development of an Early Warning Index for meningitis epidemic onset in West Africa. The development of such an index will undoubtedly help nationwide and international public health institutions and policy makers to better control MCM disease within the so-called westward–eastward pan-African Meningitis Belt.


Journal of Climate | 2003

The West African Monsoon Dynamics. Part I: Documentation of Intraseasonal Variability

Benjamin Sultan; Serge Janicot; A. Diedhiou

Abstract Intraseasonal variability in the West African monsoon is documented by using daily gridded datasets of rainfall and convection, and reanalyzed atmospheric fields, over the period 1968–90. Rainfall and convection over West Africa are significantly modulated at two intraseasonal timescales, 10–25 and 25–60 day, leading to variations of more than 30% of the seasonal signal. A composite analysis based on the dates of the maximum (minimum) of a regional rainfall index in wet (dry) sequences shows that these sequences last, on average, 9 days and belong to a main quasiperiodic signal of about 15 days. A secondary periodicity of 38 days is present but leads to a weaker modulation. During a wet (dry) sequence, convection in the ITCZ is enhanced (weakened) and its northern boundary moves to the north (south), while the speed of the African easterly jet decreases (increases), the speed of the tropical easterly jet increases (decreases), and the monsoon flow becomes stronger (weaker), all these features bei...


Philosophical Transactions of the Royal Society B | 2005

From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact

Christian Baron; Benjamin Sultan; Maud Balme; Benoit Sarr; Seydou B. Traoré; Thierry Lebel; Serge Janicot; Michael Dingkuhn

General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level.


Environmental Research Letters | 2013

Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa

Benjamin Sultan; Philippe Roudier; Philippe Quirion; Agali Alhassane; Bertrand Muller; Michael Dingkuhn; Philippe Ciais; Matthieu Guimberteau; Seydou B. Traoré; Christian Baron

Sub-Saharan West Africa is a vulnerable region where a better quantification and understanding of the impact of climate change on crop yields is urgently needed. Here, we have applied the process-based crop model SARRA-H calibrated and validated over multi-year field trials and surveys at eight contrasting sites in terms of climate and agricultural practices in Senegal, Mali, Burkina Faso and Niger. The model gives a reasonable correlation with observed yields of sorghum and millet under a range of cultivars and traditional crop management practices. We applied the model to more than 7000 simulations of yields of sorghum and millet for 35 stations across West Africa and under very different future climate conditions. We took into account 35 possible climate scenarios by combining precipitation anomalies from 20% to 20% and temperature anomalies fromC0 toC6 C. We found that most of the 35 scenarios (31/35) showed a negative impact on yields, up to 41% forC6 C= 20% rainfall. Moreover, the potential future climate impacts on yields are very different from those recorded in the recent past. This is because of the increasingly adverse role of higher temperatures in reducing crop yields, irrespective of rainfall changes. When warming exceedsC2 C, negative impacts caused by temperature rise cannot be counteracted by any rainfall change. The probability of a yield reduction appears to be greater in the Sudanian region (southern Senegal, Mali, Burkina Faso, northern Togo and Benin), because of an exacerbated sensitivity to temperature changes compared to the Sahelian region (Niger, Mali, northern parts of Senegal and Burkina Faso), where crop yields are more sensitive to rainfall change. Finally, our simulations show that the photoperiod-sensitive traditional cultivars of millet and sorghum used by local farmers for centuries seem more resilient to future climate conditions than modern cultivars bred for their high yield potential ( 28% versus 40% for theC4 C= 20% scenario). Photoperiod-sensitive cultivars counteract the effect of temperature increase on shortening cultivar duration and thus would likely avoid the need to shift to cultivars with a greater thermal time requirement. However, given the large difference in mean yields of the modern versus traditional varieties, the modern varieties would still yield more under optimal fertility conditions in a warmer world, even if they are more affected by climate change.


Geophysical Research Letters | 2008

What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign

Camille Risi; Sandrine Bony; Françoise Vimeux; Luc Descroix; Boubacar Ibrahim; Eric Lebreton; I. Mamadou; Benjamin Sultan

[1] The stable isotopic composition of the tropical precipitation constitutes a useful tool for paleoclimate reconstructions and to better constrain the water cycle. To better understand what controls the isotopic composition of tropical precipitation, we analyze the d 18 O and deuterium-excess of the precipitation of individual events collected in the Niamey area (Niger) during the monsoon season, as part of the 2006 AMMA field campaign. During the monsoon onset, the abrupt increase of convective activity over the Sahel is associated with an abrupt change in the isotopic composition. Before the onset, when convective activity is scarce, the rain composition records the intensity and the organization of individual convective systems. After the onset, on the contrary, it records a regional-scale intra-seasonal variability over the Sahel, by integrating convective activity both spatially and temporally over the previous days.


Journal of Climate | 2009

Dynamics of the West African Monsoon. Part IV: Analysis of 25–90-Day Variability of Convection and the Role of the Indian Monsoon

Serge Janicot; Flore Mounier; Nicholas M. J. Hall; Stéphanie Leroux; Benjamin Sultan; George N. Kiladis

This paper is part of a series of studies addressing the dynamics of the West African summer monsoon at intraseasonal time scales between 10 and 90 days. The dominant mode of 25-90-day convective variability in the African monsoon was investigated, starting from previous results involving the excitation of dry equatorial Kelvin and Rossby waves by a negative diabatic heat source located over the warm pool. This evolution is consistent with a significant contribution by a convectively coupled equatorial Rossby wave and the MJO. On the other hand, convectively coupled Kelvin waves as well as the dry Kelvin wave signal have a very weak impact. However, there is more to the global control of the African summer monsoon than convectively coupled wave dynamics. The active/break cycle of the Indian monsoon, controlled by a northward-moving dipole of diabatic heating in the Indian sector, can also influence the African monsoon through atmospheric teleconnections. Simulations performed with a dry primitive equation model show that this influence may be transferred through the northern Indian heat source, which excites a Rossby cyclonic circulation propagating westward over North Africa that is cut off by the northward arrival of the equatorial Indian heat source and the associated intrusion of an anticyclonic ridge. Low-level westerly winds and moisture advection within the ITCZ consequently increase over Africa. The mean time lag between an active phase over India and over Africa is about 15-20 days.


International Journal of Health Geographics | 2008

Relationships between climate and year-to-year variability in meningitis outbreaks: A case study in Burkina Faso and Niger

Pascal Yaka; Benjamin Sultan; Hélène Broutin; Serge Janicot; Solenne Philippon; Nicole Fourquet

BackgroundEvery year, West Africa is afflicted with Meningococcal Meningitis (MCM) disease outbreaks. Although the seasonal and spatial patterns of disease cases have been shown to be linked to climate, the mechanisms responsible for these patterns are still not well identified.ResultsA statistical analysis of annual incidence of MCM and climatic variables has been performed to highlight the relationships between climate and MCM for two highly afflicted countries: Niger and Burkina Faso. We found that disease resurgence in Niger and in Burkina Faso is likely to be partly controlled by the winter climate through enhanced Harmattan winds. Statistical models based only on climate indexes work well in Niger showing that 25% of the disease variance from year-to-year in this country can be explained by the winter climate but fail to represent accurately the disease dynamics in Burkina Faso.ConclusionThis study is an exploratory attempt to predict meningitis incidence by using only climate information. Although it points out significant statistical results it also stresses the difficulty of relating climate to interannual variability in meningitis outbreaks.


Environmental Research Letters | 2011

Are regional climate models relevant for crop yield prediction in West Africa

Pascal Oettli; Benjamin Sultan; Christian Baron; Mathieu Vrac

This study assesses the accuracy of state-of-the-art regional climate models for agriculture applications in West Africa. A set of nine regional configurations with eight regional models from the ENSEMBLES project is evaluated. Although they are all based on similar large-scale conditions, the performances of regional models in reproducing the most crucial variables for crop production are extremely variable. This therefore leads to a large dispersion in crop yield prediction when using regional models in a climate/crop modelling system. This dispersion comes from the different physics in each regional model and also the choice of parametrizations for a single regional model. Indeed, two configurations of the same regional model are sometimes more distinct than two different regional models. Promising results are obtained when applying a bias correction technique to climate model outputs. Simulated yields with bias corrected climate variables show much more realistic means and standard deviations. However, such a bias correction technique is not able to improve the reproduction of the year-to-year variations of simulated yields. This study confirms the importance of the multi-model approach for quantifying uncertainties for impact studies and also stresses the benefits of combining both regional and statistical downscaling techniques. Finally, it indicates the urgent need to address the main uncertainties in atmospheric processes controlling the monsoon system and to contribute to the evaluation and improvement of climate and weather forecasting models in that respect.

Collaboration


Dive into the Benjamin Sultan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Quirion

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Ciais

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mathieu Vrac

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie de Noblet-Ducoudré

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Roudier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Solenne Philippon

École pratique des hautes études

View shared research outputs
Top Co-Authors

Avatar

Michael Dingkuhn

International Rice Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge