Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin T. Goult is active.

Publication


Featured researches published by Benjamin T. Goult.


The EMBO Journal | 2009

The structure of an integrin/talin complex reveals the basis of inside‐out signal transduction

Nicholas J. Anthis; Kate L. Wegener; Feng Ye; Chungho Kim; Benjamin T. Goult; Edward D. Lowe; Ioannis Vakonakis; Neil Bate; David R. Critchley; Mark H. Ginsberg; Iain D. Campbell

Fundamental to cell adhesion and migration, integrins are large heterodimeric membrane proteins that uniquely mediate inside‐out signal transduction, whereby adhesion to the extracellular matrix is activated from within the cell by direct binding of talin to the cytoplasmic tail of the β integrin subunit. Here, we report the first structure of talin bound to an authentic full‐length β integrin tail. Using biophysical and whole cell measurements, we show that a specific ionic interaction between the talin F3 domain and the membrane–proximal helix of the β tail disrupts an integrin α/β salt bridge that helps maintain the integrin inactive state. Second, we identify a positively charged surface on the talin F2 domain that precisely orients talin to disrupt the heterodimeric integrin transmembrane (TM) complex. These results show key structural features that explain the ability of talin to mediate inside‐out TM signalling.


The EMBO Journal | 2008

The structure of the C-terminal actin-binding domain of talin

Alexandre R. Gingras; Neil Bate; Benjamin T. Goult; Larnele Hazelwood; Ilona Canestrelli; J. Günter Grossmann; HongJun Liu; Nicholas Sm Putz; Gordon C. K. Roberts; Niels Volkmann; Dorit Hanein; Igor L. Barsukov; David R. Critchley

Talin is a large dimeric protein that couples integrins to cytoskeletal actin. Here, we report the structure of the C‐terminal actin‐binding domain of talin, the core of which is a five‐helix bundle linked to a C‐terminal helix responsible for dimerisation. The NMR structure of the bundle reveals a conserved surface‐exposed hydrophobic patch surrounded by positively charged groups. We have mapped the actin‐binding site to this surface and shown that helix 1 on the opposite side of the bundle negatively regulates actin binding. The crystal structure of the dimerisation helix reveals an antiparallel coiled‐coil with conserved residues clustered on the solvent‐exposed face. Mutagenesis shows that dimerisation is essential for filamentous actin (F‐actin) binding and indicates that the dimerisation helix itself contributes to binding. We have used these structures together with small angle X‐ray scattering to derive a model of the entire domain. Electron microscopy provides direct evidence for binding of the dimer to F‐actin and indicates that it binds to three monomers along the long‐pitch helix of the actin filament.


Scientific Reports | 2015

Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation

Mingxi Yao; Benjamin T. Goult; Hu Chen; Peiwen Cong; Michael P. Sheetz; Jie Yan

The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1–R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1–R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ∼5u2005pN, suggesting that 5u2005pN is the force threshold for vinculin binding and adhesion progression.


Structure | 2010

The Structure of the Talin Head Reveals a Novel Extended Conformation of the FERM Domain

Paul R. Elliott; Benjamin T. Goult; Petra M. Kopp; Neil Bate; J. Günter Grossmann; Gordon C. K. Roberts; David R. Critchley; Igor L. Barsukov

Summary FERM domains are found in a diverse superfamily of signaling and adaptor proteins at membrane interfaces. They typically consist of three separately folded domains (F1, F2, F3) in a compact cloverleaf structure. The crystal structure of the N-terminal head of the integrin-associated cytoskeletal protein talin reported here reveals a novel FERM domain with a linear domain arrangement, plus an additional domain F0 packed against F1. While F3 binds β-integrin tails, basic residues in F1 and F2 are required for membrane association and for integrin activation. We show that these same residues are also required for cell spreading and focal adhesion assembly in cells. We suggest that the extended conformation of the talin head allows simultaneous binding to integrins via F3 and to PtdIns(4,5)P2-enriched microdomains via basic residues distributed along one surface of the talin head, and that these multiple interactions are required to stabilize integrins in the activated state.


The EMBO Journal | 2010

Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation

Benjamin T. Goult; Mohamed Bouaouina; Paul R. Elliott; Neil Bate; Bipin Patel; Alexandre R. Gingras; J. Günter Grossmann; Gordon C. K. Roberts; David A. Calderwood; David R. Critchley; Igor L. Barsukov

Talin is a 270‐kDa protein that activates integrins and couples them to cytoskeletal actin. Talin contains an N‐terminal FERM domain comprised of F1, F2 and F3 domains, but it is atypical in that F1 contains a large insert and is preceded by an extra domain F0. Although F3 contains the binding site for β‐integrin tails, F0 and F1 are also required for activation of β1‐integrins. Here, we report the solution structures of F0, F1 and of the F0F1 double domain. Both F0 and F1 have ubiquitin‐like folds joined in a novel fixed orientation by an extensive charged interface. The F1 insert forms a loop with helical propensity, and basic residues predicted to reside on one surface of the helix are required for binding to acidic phospholipids and for talin‐mediated activation of β1‐integrins. This and the fact that basic residues on F2 and F3 are also essential for integrin activation suggest that extensive interactions between the talin FERM domain and acidic membrane phospholipids are required to orientate the FERM domain such that it can activate integrins.


Journal of Biological Chemistry | 2009

The structure of an interdomain complex that regulates talin activity.

Benjamin T. Goult; Neil Bate; Nicholas J. Anthis; Kate L. Wegener; Alexandre R. Gingras; Bipin Patel; Igor L. Barsukov; Iain D. Campbell; Gordon C. K. Roberts; David R. Critchley

Talin is a large flexible rod-shaped protein that activates the integrin family of cell adhesion molecules and couples them to cytoskeletal actin. It exists in both globular and extended conformations, and an intramolecular interaction between the N-terminal F3 FERM subdomain and the C-terminal part of the talin rod contributes to an autoinhibited form of the molecule. Here, we report the solution structure of the primary F3 binding domain within the C-terminal region of the talin rod and use intermolecular nuclear Overhauser effects to determine the structure of the complex. The rod domain (residues 1655–1822) is an amphipathic five-helix bundle; Tyr-377 of F3 docks into a hydrophobic pocket at one end of the bundle, whereas a basic loop in F3 (residues 316–326) interacts with a cluster of acidic residues in the middle of helix 4. Mutation of Glu-1770 abolishes binding. The rod domain competes with β3-integrin tails for binding to F3, and the structure of the complex suggests that the rod is also likely to sterically inhibit binding of the FERM domain to the membrane.


Nature Structural & Molecular Biology | 2011

Structural Basis for the Assembly of the Smrt/Ncor Core Transcriptional Repression Machinery.

Jasmeen Oberoi; Louise Fairall; Peter J. Watson; Ji-Chun Yang; Zsolt Czimmerer; Thorsten Kampmann; Benjamin T. Goult; Jacquie A Greenwood; John T. Gooch; Bettina C. Kallenberger; Laszlo Nagy; David Neuhaus; John W. R. Schwabe

Eukaryotic transcriptional repressors function by recruiting large coregulatory complexes that target histone deacetylase enzymes to gene promoters and enhancers. Transcriptional repression complexes, assembled by the corepressor NCoR and its homolog SMRT, are crucial in many processes, including development and metabolic physiology. The core repression complex involves the recruitment of three proteins, HDAC3, GPS2 and TBL1, to a highly conserved repression domain within SMRT and NCoR. We have used structural and functional approaches to gain insight into the architecture and biological role of this complex. We report the crystal structure of the tetrameric oligomerization domain of TBL1, which interacts with both SMRT and GPS2, and the NMR structure of the interface complex between GPS2 and SMRT. These structures, together with computational docking, mutagenesis and functional assays, reveal the assembly mechanism and stoichiometry of the corepressor complex.


Journal of Biological Chemistry | 2013

RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover

Benjamin T. Goult; Thomas Zacharchenko; Neil Bate; Ricky Tsang; Fiona Hey; Alexandre R. Gingras; Paul R. Elliott; Gordon C. K. Roberts; Christoph Ballestrem; David R. Critchley; Igor L. Barsukov

Background: Talin mediates RIAM-dependent integrin activation and binds vinculin, which stabilizes adhesions. Results: Structural and biochemical data show that vinculin inhibits RIAM binding to the compact N-terminal region of the talin rod, a region essential for focal adhesion assembly. Conclusion: Talin·RIAM complexes activate integrins at the leading edge, whereas talin·vinculin promotes adhesion maturation. Significance: Talin changes partners in response to force-induced conformational change. Talin activates integrins, couples them to F-actin, and recruits vinculin to focal adhesions (FAs). Here, we report the structural characterization of the talin rod: 13 helical bundles (R1–R13) organized into a compact cluster of four-helix bundles (R2–R4) within a linear chain of five-helix bundles. Nine of the bundles contain vinculin-binding sites (VBS); R2R3 are atypical, with each containing two VBS. Talin R2R3 also binds synergistically to RIAM, a Rap1 effector involved in integrin activation. Biochemical and structural data show that vinculin and RIAM binding to R2R3 is mutually exclusive. Moreover, vinculin binding requires domain unfolding, whereas RIAM binds the folded R2R3 double domain. In cells, RIAM is enriched in nascent adhesions at the leading edge whereas vinculin is enriched in FAs. We propose a model in which RIAM binding to R2R3 initially recruits talin to membranes where it activates integrins. As talin engages F-actin, force exerted on R2R3 disrupts RIAM binding and exposes the VBS, which recruit vinculin to stabilize the complex.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structural model and functional significance of pH-dependent talin–actin binding for focal adhesion remodeling

Jyoti Srivastava; Gabriela Barreiro; S. Groscurth; Alexandre R. Gingras; Benjamin T. Goult; David R. Critchley; Mark J. S. Kelly; Matthew P. Jacobson; Diane L. Barber

Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pHi) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin–actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pKa values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pHi decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin.


Journal of Molecular Biology | 2009

The structure of the N-terminus of kindlin-1: a domain important for alphaiibbeta3 integrin activation.

Benjamin T. Goult; Mohamed Bouaouina; David S. Harburger; Neil Bate; Bipin Patel; Nicholas J. Anthis; Iain D. Campbell; David A. Calderwood; Igor L. Barsukov; Gordon C. K. Roberts; David R. Critchley

The integrin family of heterodimeric cell adhesion molecules exists in both low- and high-affinity states, and integrin activation requires binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to membrane-proximal sequences in the β-integrin cytoplasmic domain. However, it has recently become apparent that the kindlin family of FERM domain proteins is also essential for talin-induced integrin activation. FERM domains are typically composed of F1, F2, and F3 domains, but the talin FERM domain is atypical in that it contains a large insert in F1 and is preceded by a previously unrecognized domain, F0. Initial sequence alignments showed that the kindlin FERM domain was most similar to the talin FERM domain, but the homology appeared to be restricted to the F2 and F3 domains. Based on a detailed characterization of the talin FERM domain, we have reinvestigated the sequence relationship with kindlins and now show that kindlins do indeed contain the same domain structure as the talin FERM domain. However, the kindlin F1 domain contains an even larger insert than that in talin F1 that disrupts the sequence alignment. The insert, which varies in length between different kindlins, is not conserved and, as in talin, is largely unstructured. We have determined the structure of the kindlin-1 F0 domain by NMR, which shows that it adopts the same ubiquitin-like fold as the talin F0 and F1 domains. Comparison of the kindlin-1 and talin F0 domains identifies the probable interface with the kindlin-1 F1 domain. Potential sites of interaction of kindlin F0 with other proteins are discussed, including sites that differ between kindlin-1, kindlin-2, and kindlin-3. We also demonstrate that F0 is required for the ability of kindlin-1 to support talin-induced αIIbβ3 integrin activation and for the localization of kindlin-1 to focal adhesions.

Collaboration


Dive into the Benjamin T. Goult's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Bate

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bipin Patel

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Jie Yan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Mingxi Yao

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge