Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin T. Maletzke is active.

Publication


Featured researches published by Benjamin T. Maletzke.


Ecology | 2009

Does hunting regulate cougar populations? A test of the compensatory mortality hypothesis

Hilary S. Cooley; Robert B. Wielgus; Gary M. Koehler; Hugh S. Robinson; Benjamin T. Maletzke

Many wildlife species are managed based on the compensatory mortality hypothesis, which predicts that harvest mortality (especially adult male mortality) will trigger density-dependent responses in reproduction, survival, and population growth caused via reduced competition for resources. We tested the compensatory mortality hypothesis on two cougar (Puma concolor) populations in Washington, USA (one heavily hunted and one lightly hunted). We estimated population growth, density, survival, and reproduction to determine the effects of hunting on cougar population demography based on data collected from 2002 to 2007. In the heavily hunted population, the total hunting mortality rate (mean +/- SD) was 0.24 +/- 0.05 (0.35 +/- 0.08 for males, 0.16 +/- 0.05 for females). In the lightly hunted population, the total hunting mortality rate was 0.11 +/- 0.04 (0.16 +/- 0.06 for males, 0.07 +/- 0.05 for females). The compensatory mortality hypothesis predicts that higher mortality will result in higher maternity, kitten survival, reproductive success, and lower natural mortality. We found no differences in rates of maternity or natural mortality between study areas, and kitten survival was lower in the heavily hunted population. We rejected the compensatory mortality hypothesis because vital rates did not compensate for hunting mortality. Heavy harvest corresponded with increased immigration, reduced kitten survival, reduced female population growth, and a younger overall age structure. Light harvest corresponded with increased emigration, higher kitten survival, increased female population growth, and an older overall age structure. Managers should not assume the existence of compensatory mortality when developing harvest prescriptions for cougars.


Wildlife Society Bulletin | 2006

DNA Analysis of Hair and Scat Collected Along Snow Tracks to Document the Presence of Canada Lynx

Kevin S. McKelvey; Jeffrey Von Kienast; Keith B. Aubry; Gary M. Koehler; Benjamin T. Maletzke; John R. Squires; Edward L. Lindquist; Steve Loch; Michael K. Schwartz

Abstract Snow tracking is often used to inventory carnivore communities, but species identification using this method can produce ambiguous and misleading results. DNA can be extracted from hair and scat samples collected from tracks made in snow. Using DNA analysis could allow positive track identification across a broad range of snow conditions, thus increasing survey accuracy and efficiency. We investigated the efficacy of DNA identification using hairs and scats collected during the winter along putative Canada lynx (Lynx canadensis) snow tracks and compared our findings to those obtained using hair-snaring techniques during the summer. We were able to positively identify 81% and 98% of the hair and scat samples, respectively, that were collected in or near snow tracks. Samples containing amplifiable lynx DNA were collected at rates of 1.2–1.3 per km of lynx tracks followed. These amplification rates and encounter frequencies validate the collection and use of DNA samples from snow tracks as a feasible technique for identifying Canada lynx and possibly other rare carnivores. We recommend that biologists include the collection of hairs and scats for DNA analysis as part of snow-tracking surveys whenever species identification is a high priority.


Journal of Wildlife Management | 2009

Habitat Fragmentation and the Persistence of Lynx Populations in Washington State

Gary M. Koehler; Benjamin T. Maletzke; Jeff A. von Kienast; Keith B. Aubry; Robert B. Wielgus; Robert H. Naney

Abstract Lynx (Lynx canadensis) occur in the northern counties of Washington state, USA; however, current distribution and status of lynx in Washington is poorly understood. During winters 2002–2004 we snow-tracked lynx for 155 km within a 211-km2 area in northern Washington, to develop a model of lynx–habitat relationships that we could use to assess their potential distribution and status in the state. We recorded movements and behaviors of lynx with a Global Positioning System and overlaid digitized lynx trails on various habitat layers using a Geographic Information System. Based on univariate analyses, lynx preferred Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests, with moderate canopy and understory cover, and elevations ranging from 1,525 m to 1,829 m but avoided Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) forests, openings, recent burns, open canopy and understory cover, and steep slopes. A map of suitable lynx habitat based on a logistic regression model built using these candidate variables revealed that habitats at elevations >1,400 m where lynx historically occurred in Washington are intersected and fragmented by landscape features and forest conditions that are generally avoided by lynx. Our habitat suitability map predicts 3,800 km2 of lynx habitat in Washington that could support 87 lynx, far fewer than previous estimates. Since 1985, natural fires have burned >1,000 km2 of forested habitat in Okanogan County, the only region in Washington where lynx occurrence has been documented during that period. Loss of suitable habitat from natural and human-caused disturbances, and the lack of verifiable evidence of lynx occurrence in historic lynx range, suggests that fragmented landscape conditions may have impeded recolonization of these areas by lynx. Consequently, translocations may be necessary to ensure lynx persistence in Washington. We suggest that managers assess the potential for translocation by first identifying the scale and distribution of potential foraging habitats for lynx based on our or similar habitat models, survey various habitat conditions to obtain reliable estimates of snowshoe hare densities, and identify a genetically compatible source population of lynx. If habitat and source populations are adequate, reintroducing lynx to areas of their historic range may be an appropriate conservation strategy.


Journal of Wildlife Management | 2009

Habitat Conditions Associated With Lynx Hunting Behavior During Winter in Northern Washington

Benjamin T. Maletzke; Gary M. Koehler; Robert B. Wielgus; Keith B. Aubry; Marc A. Evans

Abstract Effectively managing habitat for threatened populations of Canada lynx (Lynx canadensis) requires knowledge of habitat conditions that provide for the ecological needs of lynx. We snow-tracked lynx to identify habitat conditions associated with hunting behavior and predation during winters of 2002–2003 and 2003–2004 in the northern Cascade Range in Washington state, USA. We recorded number and success of predation attempts, prey species killed, and trail sinuosity on 149 km of lynx trails. Lynx killed snowshoe hares (Lepus americanus), red squirrels (Tamiasciurus hudsonicus), and cricetids more than expected in Englemann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests, where snowshoe hare densities were highest. Lynx killed prey less than expected in Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) forests and forest openings. We used the sinuosity of lynx trails as an index of quality of habitat hunted. Lynx trails that included predation attempts were more sinuous than trail segments without predation attempts. Lynx trails had greater sinuosity in forest stands with high hare densities dominated by Engelmann spruce and subalpine fir than in stands with low hare densities dominated by Douglas-fir and ponderosa pine or in forest openings. We encourage forest managers to maintain or create sufficient understory cover to support high densities of snowshoe hares as foraging habitat for lynx.


PLOS ONE | 2013

Effects of remedial sport hunting on cougar complaints and livestock depredations.

Kaylie A. Peebles; Robert B. Wielgus; Benjamin T. Maletzke; Mark E. Swanson

Remedial sport hunting of predators is often used to reduce predator populations and associated complaints and livestock depredations. We assessed the effects of remedial sport hunting on reducing cougar complaints and livestock depredations in Washington from 2005 to 2010 (6 years). The number of complaints, livestock depredations, cougars harvested, estimated cougar populations, human population and livestock populations were calculated for all 39 counties and 136 GMUs (game management units) in Washington. The data was then analyzed using a negative binomial generalized linear model to test for the expected negative relationship between the number of complaints and depredations in the current year with the number of cougars harvested the previous year. As expected, we found that complaints and depredations were positively associated with human population, livestock population, and cougar population. However, contrary to expectations we found that complaints and depredations were most strongly associated with cougars harvested the previous year. The odds of increased complaints and livestock depredations increased dramatically (36 to 240%) with increased cougar harvest. We suggest that increased young male immigration, social disruption of cougar populations, and associated changes in space use by cougars - caused by increased hunting resulted in the increased complaints and livestock depredations. Widespread indiscriminate hunting does not appear to be an effective preventative and remedial method for reducing predator complaints and livestock depredations.


Ecology and Evolution | 2014

Effects of hunting on cougar spatial organization

Benjamin T. Maletzke; Robert B. Wielgus; Gary M. Koehler; Mark K Swanson; Hilary S. Cooley; J. Richard Alldredge

The effects of increased mortality on the spatial dynamics of solitary carnivores are not well understood. We examined the spatial ecology of two cougar populations that differed in hunting intensity to test whether increased mortality affected home range size and overlap. The stability hypothesis predicts that home range size and overlap will be similar for both sexes among the two areas. The instability hypothesis predicts that home range size and overlap will be greater in the heavily hunted population, although may differ for males versus females due to behavior strategies. We marked 22 adult resident cougars in the lightly hunted population and 20 in the heavily hunted population with GPS collars from 2002 to 2008. Cougar densities and predation rates were similar among areas, suggesting no difference in per capita resources. We compared home range size, two-dimensional home range overlap, and three-dimensional utilization distribution overlap index (UDOI) among annual home ranges for male and female cougars. Male cougars in the heavily hunted area had larger sized home ranges and greater two-dimensional and three-dimensional UDOI overlap than those in the lightly hunted area. Females showed no difference in size and overlap of home range areas between study populations – further suggesting that differences in prey quantity and distribution between study areas did not explain differences in male spatial organization. We reject the spatial stability hypothesis and provide evidence to support the spatial instability hypothesis. Increased hunting and ensuing increased male home range size and overlap may result in negative demographic effects for cougars and potential unintended consequences for managers.


Journal of Wildlife Management | 2011

Differential Prey use by Male and Female Cougars in Washington

Kevin R. White; Gary M. Koehler; Benjamin T. Maletzke; Robert B. Wielgus

ABSTRACT Male and female predators are often assumed to have the same effects on prey. Because of differences in body size and behavior, however, male and female predators may use different species, sexes, and ages of prey, which could have important implications for wildlife conservation and management. We tested for differential prey use by male and female cougars (Puma concolor) from 2003 to 2008 in Washington State. We predicted that male cougars would kill a greater proportion of larger and older prey (i.e., adult elk [Cervus elaphus]), whereas females would kill smaller and younger prey (i.e., elk calves, mule deer [Odocoileus hemionus]). We marked cougars with Global Positioning System (GPS) radio collars and investigated 436 predation sites. We located prey remains at 345 sites from 9 male and 9 female cougars. We detected 184 mule deer, 142 elk, and 17 remains from 4 other species. We used log-linear modeling to detect differences in species and age of prey killed among cougar reproductive classes. Solitary females and females with dependent offspring killed more mule deer than elk (143 vs. 83, P < 0.01), whereas males killed more elk than mule deer (59 vs. 41, P < 0.01). Proportionately, males killed 4 times more adult elk than did females (24% vs. 6% of kills) and females killed 2 times more adult mule deer than did males (26% vs. 15% of kills). Managers should consider the effects of sex of predator in conservation and management of ungulates, particularly when managing for sensitive species.


Wildlife Biology | 2018

Forecasting cattle depredation risk by recolonizing gray wolves

Zoë L. Hanley; Hilary S. Cooley; Benjamin T. Maletzke; Robert B. Wielgus

Minimizing wolf-livestock conflicts requires identifying conditions placing livestock at risk and focusing adaptive management at a local scale. Gray wolves Canis lupus began recolonizing Washington in 2008. We used generalized linear mixed models to investigate characteristics of wolf pack territories in Idaho and Montana from 1991–2008 (n = 137) and predict cattle Bos taurus depredation risk for current and probable wolf-occupied areas in Washington. Cattle depredation risk increased with cattle abundance and if the pack depredated cattle the previous year. When models were applied to wolf pack territories in Washington from 2008–2016 (n = 43), 3 of 7 (43%) depredating pack territory/years were predicted at ≥61% depredation risk. During the summer grazing season (1 May – 31 October) when most cattle depredations (97%; n = 34) occurred in Washington, cattle east of the Cascade Mountains were often on grazing allotments whereas cattle west of the Cascade Mountains were located on small, private farms. Thus, relative cattle abundance per grazing allotment and county likely represented cattle depredation risk east and west of the Cascade Mountains, respectively. County-wide and allotment cattle abundance forecasted 10.3% and 1.4% of probable wolf-occupied areas at ≥ 61% cattle depredation risk, respectively. These risk models and maps provide locations for federal and state wildlife managers to focus depredation prevention measures and a template for future analyses as wolves continue to recolonize Washington.


Animal Conservation | 2009

Source populations in carnivore management: cougar demography and emigration in a lightly hunted population

Hilary S. Cooley; Robert B. Wielgus; G. Koehler; Benjamin T. Maletzke


Wildlife Society Bulletin | 2013

Research to Regulation: Cougar Social Behavior as a Guide for Management

Richard A. Beausoleil; Gary M. Koehler; Benjamin T. Maletzke; Brian N. Kertson; Robert B. Wielgus

Collaboration


Dive into the Benjamin T. Maletzke's collaboration.

Top Co-Authors

Avatar

Robert B. Wielgus

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Hilary S. Cooley

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith B. Aubry

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Mark E. Swanson

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin R. White

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Zoë L. Hanley

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Edward L. Lindquist

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Hugh S. Robinson

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge