Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin W. Spiller is active.

Publication


Featured researches published by Benjamin W. Spiller.


Journal of Biological Chemistry | 2004

A Superfamily of Voltage-gated Sodium Channels in Bacteria

Ryuta Koishi; Haoxing Xu; Dejian Ren; Betsy Navarro; Benjamin W. Spiller; Qing Shi; David E. Clapham

NaChBac, a six-α-helical transmembrane-spanning protein cloned from Bacillus halodurans, is the first functionally characterized bacterial voltage-gated Na+-selective channel (Ren, D., Navarro, B., Xu, H., Yue, L., Shi, Q., and Clapham, D. E. (2001) Science 294, 2372-2375). As a highly expressing ion channel protein, NaChBac is an ideal candidate for high resolution structural determination and structure-function studies. The biological role of NaChBac, however, is still unknown. In this report, another 11 structurally related bacterial proteins are described. Two of these functionally expressed as voltage-dependent Na+ channels (NaVPZ from Paracoccus zeaxanthinifaciens and NaVSP from Silicibacter pomeroyi). NaVPZ and NaVSP share ∼40% amino acid sequence identity with NaChBac. When expressed in mammalian cell lines, both NaVPZ and NaVSP were Na+-selective and voltage-dependent. However, their kinetics and voltage dependence differ significantly. These single six-α-helical transmembrane-spanning subunits constitute a widely distributed superfamily (NaVBac) of channels in bacteria, implying a fundamental prokaryotic function. The degree of sequence homology (22-54%) is optimal for future comparisons of NaVBac structure and function of similarity and dissimilarity among NaVBac proteins. Thus, the NaVBac superfamily is fertile ground for crystallographic, electrophysiological, and microbiological studies.


Biochemistry | 2011

A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding

Sergio Coffa; Maya Breitman; Benjamin W. Spiller; Vsevolod V. Gurevich

Arrestins regulate the signaling and trafficking of G protein-coupled receptors (GPCRs). GPCR complexes with both nonvisual arrestins channel signaling to G protein-independent pathways, one of which is the activation of extracellular signal regulated kinase 1/2 (ERK1/2). Here we used alanine-scanning mutagenesis of residues on the nonreceptor-binding surface conserved between arrestin-2 and arrestin-3. We show that an Arg307Ala mutation significantly reduced arrestin-2 binding to c-Raf1, whereas the binding of the mutant to active phosphorylated receptor and downstream kinases MEK1 and ERK2 was not affected. In contrast to wild-type arrestin-2, the Arg307Ala mutant failed to rescue arrestin-dependent ERK1/2 activation via β2-adrenergic receptor in arrestin-2/3 double knockout mouse embryonic fibroblasts. Thus, Arg307 plays a specific role in arrestin-2 binding to c-Raf1 and is indispensable in the productive scaffolding of c-Raf1-MEK1-ERK1/2 signaling cascade. Arg307Ala mutation specifically eliminates arrestin-2 signaling through ERK, which makes arrestin-2-Arg307Ala the first signaling-biased arrestin mutant constructed. In the crystal structure the side chain of homologous arrestin-3 residue Lys308 points in a different direction. Alanine substitution of Lys308 does not significantly affect c-Raf1 binding to arrestin-3 and its ability to promote ERK1/2 activation, suggesting that the two nonvisual arrestins perform the same function via distinct molecular mechanisms.


Biochemistry | 2010

Alpha4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination.

Jamie L. McConnell; Guy R. Watkins; Sarah E. Soss; Heidi S. Franz; Lisa R. McCorvey; Benjamin W. Spiller; Walter J. Chazin; Brian E. Wadzinski

Multiple regulatory mechanisms control the activity of the protein serine/threonine phosphatase 2A catalytic subunit (PP2Ac), including post-translational modifications and its association with regulatory subunits and interacting proteins. Alpha4 is a PP2Ac-interacting protein that is hypothesized to play a role in PP2Ac ubiquitination via its interaction with the E3 ubiquitin ligase Mid1. In this report, we show that alpha4 serves as a necessary adaptor protein that provides a binding platform for both PP2Ac and Mid1. We also identify a novel ubiquitin-interacting motif (UIM) within alpha4 (amino acid residues 46-60) and analyze the interaction between alpha4 and ubiquitin using NMR. Consistent with other UIM-containing proteins, alpha4 is monoubiquitinated. Interestingly, deletion of the UIM within alpha4 enhances its association with polyubiquitinated proteins. Lastly, we demonstrate that addition of wild-type alpha4 but not an alpha4 UIM deletion mutant suppresses PP2Ac polyubiquitination. Thus, the polyubiquitination of PP2Ac is inhibited by the UIM within alpha4. These findings reveal direct regulation of PP2Ac polyubiquitination by a novel UIM within the adaptor protein alpha4.


Journal of Biological Chemistry | 2011

The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

Michele LeNoue-Newton; Guy R. Watkins; Ping Zou; Katherine L. Germane; Lisa R. McCorvey; Brian E. Wadzinski; Benjamin W. Spiller

Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: 1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and 2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.


Nature microbiology | 2016

Crystal structure of Clostridium difficile toxin A

Nicole M. Chumbler; Stacey A. Rutherford; Zhifen Zhang; Melissa A. Farrow; John P. Lisher; Erik Farquhar; David P. Giedroc; Benjamin W. Spiller; Roman A. Melnyk; D. Borden Lacy

Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon1,2. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host3,4. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.


PLOS ONE | 2013

Human Rotavirus VP6-Specific Antibodies Mediate Intracellular Neutralization by Binding to a Quaternary Structure in the Transcriptional Pore.

Mohammed S. Aiyegbo; Gopal Sapparapu; Benjamin W. Spiller; Ilyas M. Eli; Dewight R. Williams; Robert Kim; David E. Lee; Tong Liu; Sheng Li; Virgil L. Woods; David P. Nannemann; Jens Meiler; Phoebe L. Stewart; James E. Crowe

Several live attenuated rotavirus (RV) vaccines have been licensed, but the mechanisms of protective immunity are still poorly understood. The most frequent human B cell response is directed to the internal protein VP6 on the surface of double-layered particles, which is normally exposed only in the intracellular environment. Here, we show that the canonical VP6 antibodies secreted by humans bind to such particles and inhibit viral transcription. Polymeric IgA RV antibodies mediated an inhibitory effect against virus replication inside cells during IgA transcytosis. We defined the recognition site on VP6 as a quaternary epitope containing a high density of charged residues. RV human mAbs appear to bind to a negatively-charged patch on the surface of the Type I channel in the transcriptionally active particle, and they sterically block the channel. This unique mucosal mechanism of viral neutralization, which is not apparent from conventional immunoassays, may contribute significantly to human immunity to RV.


Journal of Biological Chemistry | 2012

Monoubiquitination Promotes Calpain Cleavage of the Protein Phosphatase 2A (PP2A) Regulatory Subunit α4, Altering PP2A Stability and Microtubule-associated Protein Phosphorylation

Guy R. Watkins; Ning Wang; Matthew D. Mazalouskas; Rey J. Gomez; Chris R. Guthrie; Brian C. Kraemer; Susann Schweiger; Benjamin W. Spiller; Brian E. Wadzinski

Background: α4 binds to the PP2A catalytic subunit and the microtubule-associated E3 ligase MID1. Results: MID1-dependent monoubiquitination promotes calpain-mediated cleavage of α4, altering its phosphatase regulatory function. Conclusion: Defects in this regulatory process may underlie the MAP hypophosphorylation and hyperphosphorylation seen in Opitz syndrome and Alzheimer disease. Significance: Pharmacological agents that interfere with α4 monoubiquitination or cleavage are potential therapeutics to treat Alzheimer disease. Multiple neurodegenerative disorders are linked to aberrant phosphorylation of microtubule-associated proteins (MAPs). Protein phosphatase 2A (PP2A) is the major MAP phosphatase; however, little is known about its regulation at microtubules. α4 binds the PP2A catalytic subunit (PP2Ac) and the microtubule-associated E3 ubiquitin ligase MID1, and through unknown mechanisms can both reduce and enhance PP2Ac stability. We show MID1-dependent monoubiquitination of α4 triggers calpain-mediated cleavage and switches α4s activity from protective to destructive, resulting in increased Tau phosphorylation. This regulatory mechanism appears important in MAP-dependent pathologies as levels of cleaved α4 are decreased in Opitz syndrome and increased in Alzheimer disease, disorders characterized by MAP hypophosphorylation and hyperphosphorylation, respectively. These findings indicate that regulated inter-domain cleavage controls the dual functions of α4, and dysregulation of α4 cleavage may contribute to Opitz syndrome and Alzheimer disease.


Biochemistry | 2010

Structural analysis of botulinum neurotoxin type G receptor binding .

John Schmitt; Andrew P.-A. Karalewitz; Desirée A. Benefield; Darren J. Mushrush; Rory N. Pruitt; Benjamin W. Spiller; Joseph T. Barbieri; D. Borden Lacy

Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G(T1b). The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.


Journal of Biological Chemistry | 2011

The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly.

Tara L. Archuleta; Yaqing Du; Chauca A. English; Stephen Lory; Cammie F. Lesser; Melanie D. Ohi; Ryoma Ohi; Benjamin W. Spiller

Chlamydia species are obligate intracellular pathogens that utilize a type three secretion system to manipulate host cell processes. Genetic manipulations are currently not possible in Chlamydia, necessitating study of effector proteins in heterologous expression systems and severely complicating efforts to relate molecular strategies used by Chlamydia to the biochemical activities of effector proteins. CopN is a chlamydial type three secretion effector that is essential for virulence. Heterologous expression of CopN in cells results in loss of microtubule spindles and metaphase plate formation and causes mitotic arrest. CopN is a multidomain protein with similarity to type three secretion system “plug” proteins from other organisms but has functionally diverged such that it also functions as an effector protein. We show that CopN binds directly to αβ-tubulin but not to microtubules (MTs). Furthermore, CopN inhibits tubulin polymerization by sequestering free αβ-tubulin, similar to one of the mechanisms utilized by stathmin. Although CopN and stathmin share no detectable sequence identity, both influence MT formation by sequestration of αβ-tubulin. CopN displaces stathmin from preformed stathmin-tubulin complexes, indicating that the proteins bind overlapping sites on tubulin. CopN is the first bacterial effector shown to disrupt MT formation directly. This recognition affords a mechanistic understanding of a strategy Chlamydia species use to manipulate the host cell cycle.


Biochemistry | 2012

Crystal structure of an activated variant of small heat shock protein Hsp16.5.

Hassane S. Mchaourab; Yi Lun Lin; Benjamin W. Spiller

How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.

Collaboration


Dive into the Benjamin W. Spiller's collaboration.

Top Co-Authors

Avatar

Brian E. Wadzinski

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Crowe

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

David E. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy R. Watkins

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheng Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge