Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Wipfler is active.

Publication


Featured researches published by Benjamin Wipfler.


Systematic Entomology | 2011

On the head morphology of Grylloblattodea (Insecta) and the systematic position of the order, with a new nomenclature for the head muscles of Dicondylia

Benjamin Wipfler; Ryuichiro Machida; Bernd Müller; Rolf G. Beutel

External and internal head structures of adults of Galloisiana yuasai (Grylloblattodea) are described. The results are compared with conditions found in representatives of other lower neopteran lineages, notably in Austrophasma and Karoophasma (both Mantophasmatodea). Sutures and ridges of the head capsule are discussed. A new nomenclature for head muscles is presented for the entire Dicondylia (= Zygentoma + Pterygota). Galloisiana (like its sister taxon Grylloblatta) is mostly characterized by plesiomorphic features, such as the largely unspecialized orthopteroid mouthparts, the multisegmented filiform antennae, the presence of trabeculae tentorii, the absence of muscles associated with the antennal ampullae, the presence of musculus stipitalis transversalis (0mx11) and the presence of musculus tentoriofrontalis anterior (0te2). Autapomorphies of Grylloblattodea are: (i) compound eyes composed of only 60 ommatidia or less; (ii) a lacinia with a proximal tooth; (iii) a rounded submentum; (iv) loss of musculus craniohypopharyngealis (0hy3); and (v) loss of musculus labroepipharyngealis (0lb5). The phylogenetic evaluation of 104 characters of the head yields a branching pattern with Grylloblattodea as a sister group of Mantophasmatodea in clade Xenonomia. Putative synapomorphies of both taxa are: (i) a distinct angle (more than 60°) between the submentum and the mentum; (ii) posteriorly oriented labial palpi; (iii) a flat and lobe‐like hypopharynx with a suspensorium far ventrad of the anatomical mouth opening; (iv) loss of musculus tentorioparaglossalis (0la6); and (v) a connection between the antennal ampulla and the supraoesophageal ganglion containing nuclei. Xenonomia is placed in a clade with the two dictyopteran terminals. Another monophyletic group is Embioptera + Phasmatodea. Most branches of the single tree obtained in our analysis are weakly supported. The results clearly show that more data and a much broader taxon sampling are required to clarify the phylogenetic interrelationships of the lower neopteran orders. However, our results narrow down the spectrum of possible solutions, and represent a starting point for future phylogenetic analyses, with an extensive concatenated dataset.


Cladistics | 2012

Revival of Palaeoptera—head characters support a monophyletic origin of Odonata and Ephemeroptera (Insecta)

Alexander Blanke; Benjamin Wipfler; Harald Letsch; Markus Koch; Felix Beckmann; Rolf G. Beutel; Bernhard Misof

The earliest branching event in winged insects, one of the core problems regarding early insect evolution, was addressed using characters of the head. The head is arguably one of the most complex body regions in insects and the phylogenetic information content of its features has been demonstrated. In contrast, the wings and other body parts related to the flight apparatus and sperm transmission are not useful in the context of this problem, as the outgroups (silverfish and bristletails) are wingless and transmit spermatophores externally. Therefore, they show profound differences in the organization of the postcephalic body, and assessment of homology and subsequent phylogenetic analysis of features of these body regions is extremely difficult. The core of this study is the investigation of head structures of representatives of the major clades of dragonflies. A detailed description of the head of Lestes virens is presented and was used as a starting point for the compilation of a character set and a character state matrix for the entire Dicondylia (winged insects + silverfish), with a main focus on the placement of dragonflies and consequently the basal branching event within winged insects. Our results indicate a sister‐group relationship between a clade Palaeoptera (dragonflies + mayflies) and the megadiverse monophyletic lineage Neoptera. We show that despite considerable structural similarity between the odonate and neopteran mandible, the muscle equipment in dragonflies is more plesiomorphic with respect to Dicondylia than previously known. Odonata and Ephemeroptera also share presumably derived features of the antenna, maxilla, and labial musculature. Parsimony analyses of the head data unambiguously support a clade Palaeoptera.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Insect phylogenomics: results, problems and the impact of matrix composition

Harald Letsch; Karen Meusemann; Benjamin Wipfler; Kai Schütte; Rolf G. Beutel; Bernhard Misof

In this study, we investigated the relationships among insect orders with a main focus on Polyneoptera (lower Neoptera: roaches, mantids, earwigs, grasshoppers, etc.), and Paraneoptera (thrips, lice, bugs in the wide sense). The relationships between and within these groups of insects are difficult to resolve because only few informative molecular and morphological characters are available. Here, we provide the first phylogenomic expressed sequence tags data (‘EST’: short sub-sequences from a c(opy) DNA sequence encoding for proteins) for stick insects (Phasmatodea) and webspinners (Embioptera) to complete published EST data. As recent EST datasets are characterized by a heterogeneous distribution of available genes across taxa, we use different rationales to optimize the data matrix composition. Our results suggest a monophyletic origin of Polyneoptera and Eumetabola (Paraneoptera + Holometabola). However, we identified artefacts of tree reconstruction (human louse Pediculus humanus assigned to Odonata (damselflies and dragonflies) or Holometabola (insects with a complete metamorphosis); mayfly genus Baetis nested within Neoptera), which were most probably rooted in a data matrix composition bias due to the inclusion of sequence data of entire proteomes. Until entire proteomes are available for each species in phylogenomic analyses, this potential pitfall should be carefully considered.


Organisms Diversity & Evolution | 2010

Head morphology of Osmylus fulvicephalus (Osmylidae, Neuroptera) and its phylogenetic implications

Rolf G. Beutel; Dominique Zimmermann; Marcus Krauß; Susanne Randolf; Benjamin Wipfler

External and internal head structures of Osmylus fulvicephalus were examined and described in detail. Exo- and endoskeleton, musculature, elements of the central nervous system and tracheae are compared to conditions found in other groups of Neuropterida and other endopterygote lineages. Thirty-six adult cephalic characters were compiled, combined in a datamatrix with 64 characters of the larval head, and analysed cladistically. Mainly because many data on adults remain missing, most branches in the cladogram are mostly or exclusively supported by larval features. The shortening of the mesal mandibular wall and the resulting anterior shift of the adductor tendon possibly constitute an adult groundplan apomorphy of Neuropterida. Raphidioptera and Megaloptera share distinct prognathism and the presence of a sclerotised gula. However, the orthognathous head and the absence of a gula resulted as autapomorphies of Neuroptera in our analyses. Further potential autapomorphies are the asymmetry of the mandibles as well as the respective presence of dorsolateral furrows on the head capsule, of a shovel-like extension on the ventral mandibular cutting edge, and of a row of stiff hairs on the mandible’s ventral surface. The systematic affinities of Osmylidae remain ambiguous. Osmylus is mainly characterised by plesiomorphic features of the adult head such as a complete endoskeleton, long filiform antennae, largely unmodified orthopteroid mouthparts, and particularly the nearly complete set of muscles. The placement with a clade also comprising Hemerobiidae and Chrysopidae is poorly supported. The presence of a dense vestiture of long microtrichia on the distal galeomere resulted as a synapomorphy of the three families. An apparent plesiomorphy preserved in Osmylus but absent in all other groups of Neuroptera is the presence of well developed ocelli. The present study underlines the severe shortage of detailed morphological data on the adults. Intensive study of adult structures is required for a solid reconstruction of the phylogeny of Neuropterida, especially of the hemerobiform lineage of Neuroptera.


Invertebrate Systematics | 2012

Evolutionary phenomics and the emerging enlightenment of arthropod systematics

Andrew R. Deans; István Mikó; Benjamin Wipfler; Frank Friedrich

Abstract. Published research on the diversity and evolutionary history of Arthropoda sets a high standard for data collection and the integration of novel methods. New phylogenetic estimation algorithms, divergence time approaches, collaborative tools and publishing standards, to name a few, were brought to the broader scientific audience in the context of arthropod systematics. The treatment of morphology in these studies, however, has largely escaped innovation. Lodes rich in characters too often go unexplored, phenotype concepts are published with inadequate documentation and the way observations are textualised leaves them inaccessible to a majority of biologists. We discuss these issues, using data from recent arthropod systematics publications, and offer several that stand to restore the broad utility of morphological data. Specifically, we focus on: (1) the potential of internal soft-part characters and how to integrate their observation into arthropod systematics projects through dissection and serial sectioning; (2) the importance of capturing observations in images, especially using relatively new approaches, like laser scanning confocal microscopy and three-dimensional reconstruction; and (3) the untapped potential of established knowledge representation methods, which may help make the descriptive components of arthropod systematics research more accessible to other domains.


Systematic Biology | 2013

The identification of concerted convergence in insect heads corroborates Palaeoptera

Alexander Blanke; Carola Greve; Benjamin Wipfler; Rolf G. Beutel; Barbara R. Holland; Bernhard Misof

The relationships of the 3 major clades of winged insects-Ephemeroptera, Odonata, and Neoptera-are still unclear. Many morphologists favor a clade Metapterygota (Odonata +Neoptera), but Chiastomyaria (Ephemeroptera + Neoptera) or Palaeoptera (Ephemeroptera +Odonata) has also been supported in some older and more recent studies. A possible explanation for the difficulties in resolving these relationships is concerted convergence-the convergent evolution of entire character complexes under the same or similar selective pressures. In this study, we analyze possible instances of this phenomenon in the context of head structures of Ephemeroptera, Odonata, and Neoptera. We apply a recently introduced formal approach to detect the occurrence of concerted convergence. We found that characters of the tentorium and mandibles in particular, but also some other head structures, have apparently not evolved independently, and thus can cause artifacts in tree reconstruction. Our subsequent analyses, which exclude character sets that may be affected by concerted convergence, corroborate the Palaeoptera concept. We show that the analysis of homoplasy and its influence on tree inference can be formally improved with important consequences for the identification of incompatibilities between data sets. Our results suggest that modified weighting (or exclusion of characters) in cases of formally identified correlated cliques of characters may improve morphology-based tree reconstruction.


Cladistics | 2015

The thorax of Mantophasmatodea, the morphology of flightlessness, and the evolution of the neopteran insects

Benjamin Wipfler; Rebecca Klug; Si-Qin Ge; Ming Bai; Jürgen Göbbels; Xing-Ke Yang; Thomas Hörnschemeyer

Mantophasmatodea was described as a new insect order in 2002. Since then, this small group of wingless insects has developed into one of the best investigated insect taxa. Nevertheless, many aspects of mantophasmatodean morphology as well as their evolutionary relationships remain ambiguous. To determine the phylogenetic relationships of Mantophasmatodea based on an extended character set and to elucidate possible morphological adaptions towards flightlessness, we investigated the thoracic morphology of two species, Austrophasma caledonensis and Mantophasma sp. The morphological similarity between these two species is striking and no differences in musculature were found. The mantophasmatodean thorax strongly resembles that of ice crawlers (Grylloblattodea), especially with respect to the presence of pleural processes in the meso‐ and metathorax, branched furcae in all segments, and similar muscle equipment. In a cladistic analysis containing all major lineages of Neoptera, the monophyly of Polyneoptera is supported by the presence of an anal fan and several modifications of the wing joint. Within Polyneoptera, a sister‐group relationship between stoneflies and the remaining Polyneoptera is supported. A clade comprising Mantophasmatodea and the Grylloblattodea gains strong support from thoracic morphology and can be considered assured. Potential thoracic apomorphies include prothoracic paracoxal invaginations, pterothoracic pleural arms that originate from the epimeron, and a unique metathoracic sterno‐coxal musculature. The monophyly of Orthoptera and Dictyoptera is further supported while the deeper polyneopteran nodes remain unresolved. Among the wingless taxa investigated we found few general morphological adaptations whereas, in other aspects, especially in the musculature, strong differences could be observed. However, much more research on the strongly neglected topic of flightlessness is required to make reliable statements.


Insect Systematics & Evolution | 2014

100 years Zoraptera : a phantom in insect evolution and the history of its investigation

Yuta Mashimo; Yoko Matsumura; Ryuichiro Machida; Romano Dallai; Marco Gottardo; Kazunori Yoshizawa; Frank Friedrich; Benjamin Wipfler; Rolf G. Beutel

Zoraptera are a cryptic and enigmatic group of insects. The species diversity is lower than in almost all other groups of Hexapoda, but may be distinctly higher than presently known. Several new species were described from different regions recently. The systematic placement was discussed controversially since the group was discovered 100 years ago. Affinities with Isoptera and Psocoptera were discussed in earlier studies. A sister group relationship with Acercaria (Psocodea, Thysanoptera, Hemiptera) was proposed by W. Hennig, for the first time based on a strictly phylogenetic argumentation. More recent studies consistently suggest a placement among the “lower neopteran orders” (Polyneoptera). Close affinities to Dictyoptera were proposed and alternatively a sister group relationship with Embioptera or with Embioptera + Phasmatodea (Eukinolabia), respectively. The precise placement is still controversial and the intraordinal relationships are largely unclear. Recent transcriptome analyses tentatively suggest a clade Zoraptera + Dermaptera as sister group of all other polyneopteran orders. The oldest fossils are from Cretaceous amber. An extinct genus from this era may be the sister group of all the remaining zorapterans. The knowledge of the morphology, development and features related to the reproductive system greatly increased in recent years. The general body morphology is very uniform, whereas the genitalia differ strongly between species. This is likely due to different kinds of selection, i.e. sexual selection in the case of the genital organs. The mating pattern also differs profoundly within the order. A unique external sperm transfer occurs in Zorotypus impolitus. A species-level phylogeny and more investigations of the reproductive system should have high priority.


Frontiers in Zoology | 2014

Head morphology of Tricholepidion gertschi indicates monophyletic Zygentoma

Alexander Blanke; Markus Koch; Benjamin Wipfler; Fabian Wilde; Bernhard Misof

The relic silverfish Tricholepidion gertschi is the sole extant representative of the family Lepidotrichidae. Its phylogenetic position is of special interest, since it may provide crucial insights into the early phenotypic evolution of the dicondylian insects. However, the phylogenetic position of T. gertschi is unclear. Originally, it was classified among silverfish (Zygentoma), but various alternative relationships within Zygentoma as well as a sistergroup relationship to all remaining Zygentoma + Pterygota are discussed, the latter implying a paraphyly of Zygentoma with respect to Pterygota. Since characters of the head anatomy play a major role in this discussion, we here present the so far most detailed description of the head of T. gertschi based on anatomical studies by synchrotron micro-computer tomography and scanning electron microscopy. A strong focus is put on the documentation of mouthparts and the anatomy of the endoskeleton as well as the muscle equipment. In contrast to former studies we could confirm the presence of a Musculus hypopharyngomandibularis (0md4). The ligamentous connection between the mandibles composed of Musculus tentoriomandibularis inferior (0md6) is also in contact with the anterior tentorium. Phylogenetic analysis of cephalic data results in monophyletic Zygentoma including T. gertschi. Zygentoma are supported by the presence of a set of labial muscles originating at the postocciput, presence of an additional intralabral muscle, and four labial palpomeres. Character systems like the genitalic system, the mating behaviour, the segmentation of the tarsi, the overall body form, and the presence of ocelli which were proposed in other studies as potentially useful for phylogenetic reconstruction are evaluated.


Current opinion in insect science | 2016

A review of methods for analysing insect structures — the role of morphology in the age of phylogenomics

Benjamin Wipfler; Hans Pohl; Margarita Yavorskaya; Rolf G. Beutel

Techniques currently used in insect morphology are outlined briefly. Scanning electron microscopy (SEM) and microphotography are used mainly for documenting external features, the former providing more information on tiny surface structures and the latter on coloration, transparency and degree of sclerotization. A broad spectrum of methods is now available for anatomical studies: histological serial sections, confocal laser scanning microscopy (CLSM), light-sheet fluorescence microscopy (LSFM), serial block-face scanning electron microscopy (SBFSEM), dual beam scanning electron microscopy (FIB-SEM), nuclear magnetic resonance imaging (NMRI), and μ-computed tomography (micro-CT). The use of SBFSEM and FIB-SEM is restricted to extremely small samples. NMRI is used mainly in in vivo studies. Micro-computed tomography, in combination with computer-based reconstruction, has greatly accelerated the acquisition of high quality data in a phylogenetic context. Morphology will continue to play a vital role in phylogenetic and evolutionary investigations. It provides independent data for checking the plausibility of molecular phylogenies and is the only source of information for placing extinct taxa. It is the necessary basis for reconstructing character evolution on the phenotypic level and for developing complex evolutionary scenarios. Computer-based anatomical ontologies are an additional future perspective of morphological work.

Collaboration


Dive into the Benjamin Wipfler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Bradler

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Bai

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge