Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjawan Tuetun is active.

Publication


Featured researches published by Benjawan Tuetun.


Journal of Vector Ecology | 2006

Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae)

Udom Chaithong; Wej Choochote; Kittichai Kamsuk; Atchariya Jitpakdi; Pongsri Tippawangkosol; Dana Chaiyasit; Daruna Champakaew; Benjawan Tuetun; Benjawan Pitasawat

ABSTRACT Ethanolic extracts derived from three species of the Piperaceae (pepper) family, Piper longum L., P. ribesoides Wall., and P. sarmentosum Roxb. ex Hunt., were evaluated for efficacy against early 4th instar larvae of Aedes aegypti mosquitoes using larvicidal bioassays. The highest larvicidal efficacy was established from P. longum, followed by P. sarmentosum and P. ribesoides, with LC50 values of 2.23, 4.06, and 8.13 ppm, respectively. Observations of morphological alterations on treated 4th instar larvae revealed that most organs, except anal papillae, had a normal structural appearance that was similar to controls. Under light microscopy, the internal structures of anal papillae in the treated larvae showed shrinkage, while the external features were normal in appearance. Ultrastructural studies, however, clearly demonstrated external destruction, with extensive damage and shrunken cuticle of the anal papillae. The structural deformation of anal papillae probably led to their dysfunction, which may be intrinsically associated with the death of the larvae. This study affords some evidence regarding the action site of the pepper extracts and suggests their potential in developing new types of larvicides used for mosquito control.


Journal of Vector Ecology | 2010

Chemical Composition and Larvicidal Activity of Edible Plant-Derived Essential Oils Against the Pyrethroid-Susceptible and -Resistant Strains of Aedes aegypti (Diptera: Culicidae)

Nataya Sutthanont; Wej Choochote; Benjawan Tuetun; Anuluck Junkum; Atchariya Jitpakdi; Udom Chaithong; Doungrat Riyong; Benjawan Pitasawat

ABSTRACT: The chemical compositions and larvicidal potential against mosquito vectors of selected essential oils obtained from five edible plants were investigated in this study. Using a GC/MS, 24, 17, 20, 21, and 12 compounds were determined from essential oils of Citrus hystrix, Citrus reticulata, Zingiber zerumbet, Kaempferia galanga, and Syzygium aromaticum, respectively. The principal constituents found in peel oil of C. hystrix were &bgr;-pinene (22.54%) and d-limonene (22.03%), followed by terpinene-4-ol (17.37%). Compounds in C. reticulata peel oil consisted mostly of d-limonene (62.39%) and y-terpinene (14.06%). The oils obtained from Z. zerumbet rhizome had &agr;-humulene (31.93%) and zerumbone (31.67%) as major components. The most abundant compounds in K. galanga rhizome oil were 2-propeonic acid (35.54%), pentadecane (26.08%), and ethyl-p-methoxycinnamate (25.96%). The main component of S. aromaticum bud oil was eugenol (77.37%), with minor amounts of trans-caryophyllene (13.66%). Assessment of larvicidal efficacy demonstrated that all essential oils were toxic against both pyrethroid-susceptible and resistant Ae. aegypti laboratory strains at LC50, LC95, and LC99 levels. In conclusion, we have documented the promising larvicidal potential of essential oils from edible herbs, which could be considered as a potentially alternative source for developing novel larvicides to be used in controlling vectors of mosquitoborne disease.


Revista Do Instituto De Medicina Tropical De Sao Paulo | 2006

Adulticidal activity against Stegomyia aegypti (Diptera: Culicidae) of three Piper spp.

Wej Choochote; Udom Chaithong; Kittichai Kamsuk; Eumporn Rattanachanpichai; Atchariya Jitpakdi; Pongsri Tippawangkosol; Dana Chaiyasit; Daruna Champakaew; Benjawan Tuetun; Benjawan Pitasawat

Three Piper species, Piper longum, P. ribesoides and P. sarmentosum, were selected for investigation of adulticidal potential against Stegomyia aegypti, a main vector of dengue and dengue haemorrhagic fever. Successive extraction by maceration with 95% ethanol showed percentage yields of ethanolic extracts, which derived from P. longum, P. ribesoides and P. sarmentosum, of 8.89, 3.21 and 5.30% (w/w), respectively. All Piper extracts illustrated an impressive adulticidal activity when tested against female mosquitoes by topical application. The susceptibility of St. aegypti females to ethanol-extracted Piper was dose dependent and varied among the plant species. The highest adulticidal effect was established from P. sarmentosum, followed by P. ribesoides and P. longum, with LD50 values of 0.14, 0.15 and 0.26 microg/female, respectively. The potential of these Piper species, as possible mosquitocides, established convincing activity for further researches to develop natural substances for combat against adult mosquitoes.


Tropical Medicine & International Health | 2005

Repellent properties of celery, Apium graveolens L., compared with commercial repellents, against mosquitoes under laboratory and field conditions

Benjawan Tuetun; Wej Choochote; Duangta Kanjanapothi; Eumporn Rattanachanpichai; Udom Chaithong; Prasong Chaiwong; Atchariya Jitpakdi; Pongsri Tippawangkosol; D. Riyong; Benjawan Pitasawat

In our search for new bioactive products against mosquito vectors, we reported the slightly larvicidal and adulticidal potency, but remarkable repellency of Apium graveolens both in laboratory and field conditions. Repellency of the ethanolic preparation of hexane‐extracted A. graveolens was, therefore, investigated and compared with those of 15 commercial mosquito repellents including the most widely used, DEET. Hexane‐extracted A. graveolens showed a significant degree of repellency in a dose‐dependent manner with vanillin added. Ethanolic A. graveolens formulations (10–25% with and without vanillin) provided 2–5 h protection against female Aedes aegypti. Repellency that derived from the most effective repellent, 25% of hexane‐extracted A. graveolens with the addition of 5% vanillin, was comparable to the value obtained from 25% of DEET with 5% vanillin added. Moreover, commercial repellents, except formulations of DEET, showed lower repellency than that of A. graveolens extract. When applied on human skin under field conditions, the hexane‐extracted A. graveolens plus 5% vanillin showed a strong repellent action against a wide range of mosquito species belonging to various genera. It had a protective effect against Aedes gardnerii, Aedes lineatopennis, Anopheles barbirostris, Armigeres subalbatus, Culex tritaeniorhynchus, Culex gelidus, Culex vishnui group and Mansonia uniformis. The hexane‐extracted A. graveolens did not cause a burning sensation or dermal irritation when applied to human skin. No adverse effects were observed on the skin or other parts of the human volunteers’ body during 6 months of the study period or in the following 3 months, after which time observations ceased. Therefore, A. graveolens can be a potential candidate for use in the development of commercial repellents that may be an alternative to conventional synthetic chemicals, particularly in community vector control applications.


Parasitology Research | 2008

Molecular and cytogenetic evidence of three sibling species of the Anopheles barbirostris Form A (Diptera:Culicidae) in Thailand

Atiporn Saeung; Visut Baimai; Yasushi Otsuka; Rampa Rattanarithikul; Pradya Somboon; Anuluck Junkum; Benjawan Tuetun; Hiroyuki Takaoka; Wej Choochote

Nine isoline colonies of Anopheles barbirostris Form A, derived from individual isofemale lines from Chiang Mai, Phetchaburi, and Kanchanaburi, were established in our insectary at Chiang Mai University. All isolines shared the same mitotic karyotype (X1, X2, Y1). Molecular analysis of deoxyribonucleic acid (DNA) sequences and polymerase chain reaction (PCR) products of ITS2, COI, and COII regions revealed three distinct groups: A1 (Chiang Mai), A2 (Phetchaburi), and A3 (Kanchanaburi). Crossing experiments among the three groups exhibited strong reproductive isolation, producing low and/or non-hatched eggs, and inviable and/or abnormal development of the reproductive system of F1-progenies. Asynaptic regions along the five polytene chromosome arms of F1-hybrid larvae clearly supported the existence of three sibling species within A. barbirostris Form A, provisionally named species A1, A2, and A3.


Parasitology Research | 2007

Cytogenetic and molecular evidence for two species in the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand

Atiporn Saeung; Yasushi Otsuka; Visut Baimai; Pradya Somboon; Benjawan Pitasawat; Benjawan Tuetun; Anuluck Junkum; Hiroyuki Takaoka; Wej Choochote

Seventeen isolines of Anopheles barbirostris derived from animal-biting female mosquitoes showed three karyotypic forms: Form A (X2, Y1) in five isolines from Phetchaburi province; Form B (X1, X3, Y2) in three and eight isolines from Chiang Mai and Ubon Ratchathani provinces, respectively; Form C (X2, Y3) in one isoline from Phetchaburi province. All 17 isolines exhibited an average branch summation of seta 2-VI pupal skins ranging from 12.1–13.0 branches, which was in the limit of A. barbirostris (6–18 branches). Of the 12 human-biting isolines from Chiang Mai province, five isolines showed Form B (X2, Y2), and seven isolines exhibited a new karyotypic form designated as Form E (X2, Y5). All of 12 isolines had an average branch summation of seta 2-VI pupal skins ranging from 22.4–24.5 branches, which was in the limit of Anopheles campestris (17–58 branches). Thus, they were tentatively designated as A. campestris-like Forms B and E. Hybridization between A. campestris-like Forms B and E showed that they were genetically compatible, yielding viable progeny for several generations suggesting conspecific relationships of these two karyotypic forms. Reproductive isolation among crosses between A. campestris-like Form B and A. barbirostris Forms A, B, and C strongly suggested the existence of these two species. In addition, the very low intraspecific variation (genetic distance <0.005) of the nucleotide sequence of ITS2 of the rDNA and COI and COII of mitochondrial DNA of the seven isolines of A. campestris-like Forms B and E supported their conspecific relationship. The large sequence divergence of ITS2 (0.203–0.268), COI (0.026–0.032), and COII (0.030–0.038) from genomic DNA of A. campestris-like Forms B and E and the A. barbirostris Forms A, B, and C clearly supported cytogenetic and morphological evidence.


Annals of Tropical Medicine and Parasitology | 2004

Mosquito repellency of the seeds of celery (Apium graveolens L.).

Benjawan Tuetun; Wej Choochote; Eumporn Rattanachanpichai; Udom Chaithong; Atchariya Jitpakdi; Pongsri Tippawangkosol; D. Riyong; Benjawan Pitasawat

Abstract When the mosquito repellencies of four fractions of Apium graveolens seeds (one hexane, two dichloromethane and one methanolic) were investigated in the laboratory, all four were found to offer human volunteers some protection against female, adult Aedes aegypti. The hexane fraction, however, was found to exhibit the highest repellency in the laboratory, with median effective doses (ED50) and ED95 of 0.41 and 2.93 mg/cm2 skin, respectively. Only this fraction, which was also found to provide protection against mosquito bites for 3.5 h when applied, in the laboratory, at a concentration of 250 mg/ml, was then investigated for its repellency in the field and its stability. In storage, it was found to retain its repellency for at least 2 months, although significant reductions in its repellency were observed (in terms of shortened complete-protection times) after 3 months, whatever the temperature of storage (-20°C, 4°C, or room temperature). When applied to the skin of volunteers under field conditions, the hexane fraction showed strong repellent activity against a wide range of mosquito species belonging to various genera (Ae. gardnerii, Ae. lineatopennis, Armigeres subalbatus, Culex tritaeniorhynchus, Cx. vishnui group, Cx. quinquefasciatus and Mansonia uniformis). It appeared not to cause dermal irritation or any other adverse effect, either during 6 months of use or in the following 3 months of follow-up. Mosquito repellents based on extracts of Ap. graveolens seeds could be developed commercially, as an effective personal-protection measure against mosquito bites and the diseases caused by mosquito-borne pathogens.


Parasitology Research | 2009

Cytogenetic and molecular evidence for an additional new species within the taxon Anopheles barbirostris (Diptera: Culicidae) in Thailand

Sittiporn Suwannamit; Visut Baimai; Yasushi Otsuka; Atiporn Saeung; Sorawat Thongsahuan; Benjawan Tuetun; Chamnarn Apiwathnasorn; Narissara Jariyapan; Pradya Somboon; Hiroyuki Takaoka; Wej Choochote

ITS2 DNA sequences of 42 isoline colonies of Anopheles barbirostris species A1 and A2 were analyzed and a new genetic species, temporarily designated as species A4 (Chiang Mai), was revealed. The large sequence divergences of the ITS2 (0.116-0.615), COI (0.023–0.048), and COII (0.030–0.040) genes between A. barbirostris species A4/A1 (Chiang Mai), A4/A2 (Phetchaburi), A4/A3 (Kanchanaburi), and A4/Anopheles campestris-like Form E (Chiang Mai) provided good supporting evidence. Species A1, A2, A3, and A4 share a mitotic karyotype of Form A (X1, X2, Y1). Crossing experiments between species A4 and the other four species yielded strong reproductive isolation producing few and/or non-hatched eggs and inviable and/or abnormal development of the reproductive system of F1 progenies. Moreover, available F1 hybrid larvae showed asynaptic polytene chromosome arms. Hence, molecular and cytogenetic evidence strongly support the existence of A. barbirostris species A4, which is more closely related to A. campestris-like Form E than to species A1, A2, and A3. Additionally, crossing experiments among 12 and seven isolines of different cytological forms of species A1 (A, B, C, D) and A2 (A, B), respectively, yielded fertile and viable F1 progenies. Thus, different karyotypic forms occurring in natural populations of species A1 and A2 merely represent intraspecies variation of sex chromosomes due to the extra blocks of heterochromatin.


Memorias Do Instituto Oswaldo Cruz | 2009

Karyotypic variation and geographic distribution of Anopheles campestris-like (Diptera: Culicidae) in Thailand

Sorawat Thongsahuan; Visut Baimai; Yasushi Otsuka; Atiporn Saeung; Benjawan Tuetun; Narissara Jariyapan; Sittiporn Suwannamit; Pradya Somboon; Atchariya Jitpakdi; Hiroyuki Takaoka; Wej Choochote

Seventy-one isolines of Anopheles campestris-like were established from wild-caught females collected from human-biting and animal-biting traps at 12 locations in Thailand. All isolines had an average branch summation of seta 2-VI pupal skins ranging from 20.3-30.0 branches, which is in the range of An. campestris (17-58 branches). They showed three different karyotypes based on the amount of extra heterochromatin in the sex chromosomes, namely Forms B (X2, Y2), E (X1, X2, X3, Y5) and a new karyotypic Form F (X2, X3, Y6). Form B has been found only in Chaing Mai and Kamphaeng Phet populations, while Forms E and F are widely distributed throughout the species range. Genetic crosses between the 12 isolines, which were arbitrarily selected as representatives of An. campestris-like Forms B, E and F, revealed genetic compatibility that provided viable progeny through F2 generations, suggesting a conspecific nature of these karyotypic forms. These results are supported by the very low intraspecies variation (genetic distance < 0.005) of ITS2, COI and COII from genomic DNA of the three karyotypic forms.


Psyche: A Journal of Entomology | 2012

Chemical Constituents and Combined Larvicidal Effects of Selected Essential Oils against Anopheles cracens (Diptera: Culicidae)

Jitrawadee Intirach; Anuluck Junkum; Benjawan Tuetun; Wej Choochote; Udom Chaithong; Atchariya Jitpakdi; Doungrat Riyong; Daruna Champakaew; Benjawan Pitasawat

A preliminary study on larvicidal activity against laboratory-colonized Anopheles cracens mosquitos revealed that five of ten plant oils at concentration of 100 ppm showed 95–100% larval mortality. The essential oils of five plants, including Piper sarmentosum, Foeniculum vulgare, Curcuma longa, Myristica fragrans, and Zanthoxylum piperitum, were then selected for chemical analysis, dose-response larvicidal experiments, and combination-based bioassays. Chemical compositions analyzed by gas chromatography coupled to mass spectrometry demonstrated that the main component in the oil derived from P. sarmentosum, F. vulgare, C. longa, M. fragrans, and Z. piperitum was croweacin (71.01%), anethole (63.00%), ar-turmerone (30.19%), safrole (46.60%), and 1,8-cineole (21.27%), respectively. For larvicidal bioassay, all five essential oils exerted promising efficacy in a dose-dependent manner and different performances on A. cracens after 24 hours of exposure. The strongest larvicidal potential was established from P. sarmentosum, followed by F. vulgare, C. longa, M. fragrans, and Z. piperitum, with LC50 values of 16.03, 32.77, 33.61, 40.00, and 63.17 ppm, respectively. Binary mixtures between P. sarmentosum, the most effective oil, and the others at the highest ratio were proved to be highly efficacious with a cotoxicity coefficient value greater than 100, indicating synergistic activity. Results of mixed formulations of different essential oils generating synergistic effects may prove helpful in developing effective, economical, and ecofriendly larvicides, as favorable alternatives for mosquito management.

Collaboration


Dive into the Benjawan Tuetun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Riyong

Chiang Mai University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge