Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benoît Biais is active.

Publication


Featured researches published by Benoît Biais.


Analytical Chemistry | 2009

1H NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: Application to spatial metabolite analysis in melon

Benoît Biais; J. William Allwood; Catherine Deborde; Yun Xu; Mickaël Maucourt; Bertrand Beauvoit; Warwick B. Dunn; Daniel Jacob; Royston Goodacre; Dominique Rolin; Annick Moing

A metabolomics approach combining (1)H NMR and gas chromatography-electrospray ionization time-of-flight mass spectrometry (GC-EI-TOFMS) profiling was employed to characterize melon (Cucumis melo L.) fruit. In a first step, quantitative (1)H NMR of polar extracts and principal component analyses (PCA) of the corresponding data highlighted the major metabolites in fruit flesh, including sugars, organic acids, and amino acids. In a second step, the spatial localization of metabolites was investigated using both analytical techniques. Direct (1)H NMR profiling of juice or GC-EI-TOFMS profiling of tissue extracts collected from different locations in the fruit flesh provided information on advantages and drawbacks of each technique for the analysis of a sugar-rich matrix such as fruit. (1)H NMR and GC-EI-TOFMS data sets were compared using independently performed PCA and multiblock hierarchical PCA (HPCA), respectively. In addition a correlation-based multiblock HPCA was used for direct comparison of both analytical data sets. These data analyses revealed several gradients of metabolites in fruit flesh which can be related with differences in metabolism and indicated the suitability of multiblock HPCA for correlation of data from two (or potentially more) metabolomics platforms.


Plant Physiology | 2013

SlARF4, an Auxin Response Factor Involved in the Control of Sugar Metabolism during Tomato Fruit Development

Maha Sagar; Christian Chervin; Isabelle Mila; Yanwei Hao; Jean-Paul Roustan; Mohamed Benichou; Yves Gibon; Benoît Biais; Pierre Maury; Alain Latché; Jean-Claude Pech; Mondher Bouzayen; Mohamed Zouine

Tomato fruit development is subject to connections between auxin signaling, chloroplastic activity, and sugar metabolism. Successful completion of fruit developmental programs depends on the interplay between multiple phytohormones. However, besides ethylene, the impact of other hormones on fruit quality traits remains elusive. A previous study has shown that down-regulation of SlARF4, a member of the tomato (Solanum lycopersicum) auxin response factor (ARF) gene family, results in a dark-green fruit phenotype with increased chloroplasts (Jones et al., 2002). This study further examines the role of this auxin transcriptional regulator during tomato fruit development at the level of transcripts, enzyme activities, and metabolites. It is noteworthy that the dark-green phenotype of antisense SlARF4-suppressed lines is restricted to fruit, suggesting that SlARF4 controls chlorophyll accumulation specifically in this organ. The SlARF4 underexpressing lines accumulate more starch at early stages of fruit development and display enhanced chlorophyll content and photochemical efficiency, which is consistent with the idea that fruit photosynthetic activity accounts for the elevated starch levels. SlARF4 expression is high in pericarp tissues of immature fruit and then undergoes a dramatic decline at the onset of ripening concomitant with the increase in sugar content. The higher starch content in developing fruits of SlARF4 down-regulated lines correlates with the up-regulation of genes and enzyme activities involved in starch biosynthesis, suggesting their negative regulation by SlARF4. Altogether, the data uncover the involvement of ARFs in the control of sugar content, an essential feature of fruit quality, and provide insight into the link between auxin signaling, chloroplastic activity, and sugar metabolism in developing fruit.


New Phytologist | 2011

Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics

Annick Moing; Asaph Aharoni; Benoît Biais; Ilana Rogachev; Sagit Meir; Leonid Brodsky; J. William Allwood; Alexander Erban; Warwick B. Dunn; Lorraine Kay; Sjaak de Koning; Ric C. H. de Vos; Harry Jonker; Roland Mumm; Catherine Deborde; Michael Maucourt; Stéphane Bernillon; Yves Gibon; Thomas H. Hansen; Søren Husted; Royston Goodacre; Joachim Kopka; Jan K. Schjoerring; Dominique Rolin; Robert D. Hall

• Variations in tissue development and spatial composition have a major impact on the nutritional and organoleptic qualities of ripe fleshy fruit, including melon (Cucumis melo). To gain a deeper insight into the mechanisms involved in these changes, we identified key metabolites for rational food quality design. • The metabolome, volatiles and mineral elements were profiled employing an unprecedented range of complementary analytical technologies. Fruits were followed at a number of time points during the final ripening process and tissues were collected across the fruit flesh from rind to seed cavity. Approximately 2000 metabolite signatures and 15 mineral elements were determined in an assessment of temporal and spatial melon fruit development. • This study design enabled the identification of: coregulated hubs (including aspartic acid, 2-isopropylmalic acid, β-carotene, phytoene and dihydropseudoionone) in metabolic association networks; global patterns of coordinated compositional changes; and links of primary and secondary metabolism to key mineral and volatile fruit complements. • The results reveal the extent of metabolic interactions relevant to ripe fruit quality and thus have enabled the identification of essential candidate metabolites for the high-throughput screening of melon breeding populations for targeted breeding programmes aimed at nutrition and flavour improvement.


Journal of Plant Physiology | 2010

Metabolic acclimation to hypoxia revealed by metabolite gradients in melon fruit.

Benoît Biais; Bertrand Beauvoit; J. William Allwood; Catherine Deborde; Mickaël Maucourt; Royston Goodacre; Dominique Rolin; Annick Moing

A metabolomics approach using (1)H NMR and GC-MS profiling of primary metabolites and quantification of adenine nucleotides with luciferin bioluminescence was employed to investigate the spatial changes of metabolism in melon fruit. Direct (1)H NMR profiling of juice collected from different locations in the fruit flesh revealed several gradients of metabolites, e.g. sucrose, alanine, valine, GABA or ethanol, with increase in concentrations from the periphery to the center of the fruit. GC-MS profiling of ground samples revealed gradients for metabolites not detected using (1)H NMR, including pyruvic and fumaric acids. The quantification of adenine nucleotides highlighted a strong decrease in both ATP and ADP ratios and the adenylate energy charge from the periphery to the center of the fruit. These concentration patterns are consistent with an increase in ethanol fermentation due to oxygen limitation and were confirmed by observed changes in alanine and GABA concentrations, as well as other markers of hypoxia in plants. Ethanol content in melon fruit can affect organoleptic properties and consumer acceptance. Understanding how and when fermentation occurred can help to manage the culture and limit ethanol production.


Plant Physiology | 2014

Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism

Benoît Biais; Camille Bénard; Bertrand Beauvoit; Sophie Colombié; Duyen Prodhomme; Guillaume Ménard; Stéphane Bernillon; Bernadette Gehl; Hélène Gautier; Patricia Ballias; Jean-Pierre Mazat; Lee J. Sweetlove; Michel Génard; Yves Gibon

Enzyme activities in central metabolism of tomato fruits are strongly influenced by developmental stage but only weakly by environment. To assess the influence of the environment on fruit metabolism, tomato (Solanum lycopersicum ‘Moneymaker’) plants were grown under contrasting conditions (optimal for commercial, water limited, or shaded production) and locations. Samples were harvested at nine stages of development, and 36 enzyme activities of central metabolism were measured as well as protein, starch, and major metabolites, such as hexoses, sucrose, organic acids, and amino acids. The most remarkable result was the high reproducibility of enzyme activities throughout development, irrespective of conditions or location. Hierarchical clustering of enzyme activities also revealed tight relationships between metabolic pathways and phases of development. Thus, cell division was characterized by high activities of fructokinase, glucokinase, pyruvate kinase, and tricarboxylic acid cycle enzymes, indicating ATP production as a priority, whereas cell expansion was characterized by enzymes involved in the lower part of glycolysis, suggesting a metabolic reprogramming to anaplerosis. As expected, enzymes involved in the accumulation of sugars, citrate, and glutamate were strongly increased during ripening. However, a group of enzymes involved in ATP production, which is probably fueled by starch degradation, was also increased. Metabolites levels seemed more sensitive than enzymes to the environment, although such differences tended to decrease at ripening. The integration of enzyme and metabolite data obtained under contrasting growth conditions using principal component analysis suggests that, with the exceptions of alanine amino transferase and glutamate and malate dehydrogenase and malate, there are no links between single enzyme activities and metabolite time courses or levels.


Metabolomics | 2009

Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit

Catherine Deborde; Mickaël Maucourt; Pierre Baldet; Stéphane Bernillon; Benoît Biais; Gilles Talon; Carine Ferrand; Daniel Jacob; Hélène Ferry-Dumazet; Antoine de Daruvar; Dominique Rolin; Annick Moing

Tomato is an essential crop in terms of economic importance and nutritional quality. In France, the third most important region for tomato (Solanum lycopersicum L.) production is Aquitaine where the major part of production is now grown soilless under greenhouse conditions with harvest from March to November. Tomato fruit quality at harvest is a direct function of its metabolite content at that time. The aim of this work was to use a global approach to characterize changes in the fruit organoleptic quality at harvest under commercial culture conditions during an entire season for two varieties and two different fertilization practices (with or without recycling of the nutrient solution) for one variety. Absolute quantification data of 32 major compounds in fruit without seeds were obtained through untargeted (proton nuclear magnetic resonance, 1H-NMR) quantitative profiling. These data were complemented by colorimetric analysis of ascorbate and total phenolics. They were analyzed with chemometric approaches. Principal component analysis (PCA) or partial least square analyses (PLS) revealed more discriminant metabolites for season than for variety and showed that nutrient solution recycling had very little effect on fruit composition. These tendencies were confirmed with univariate analyses. 1H-NMR profiling complemented with colorimetric analyses therefore provided a diagnostic tool to follow the changes in organoleptic and nutritional quality of tomato. In addition the quantitative information generated will help to increase our knowledge on the mechanisms of plant response to environmental modifications.


Metabolomics | 2013

Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment

Stéphane Bernillon; Benoît Biais; Catherine Deborde; Mickaël Maucourt; Cécile Cabasson; Yves Gibon; Thomas H. Hansen; Søren Husted; Ric C. H. de Vos; Roland Mumm; Harry Jonker; Jane L. Ward; Sonia J. Miller; John M. Baker; Joseph Burger; Ya’akov Tadmor; Michael H. Beale; Jan K. Schjoerring; Arthur A. Schaffer; Dominique Rolin; Robert D. Hall; Annick Moing

Melon (Cucumis melo L.) is a global crop in terms of economic importance and nutritional quality. The aim of this study was to explore the variability in metabolite and elemental composition of several commercial varieties of melon in various environmental conditions. Volatile and non-volatile metabolites as well as mineral elements were profiled in the flesh of mature fruit, employing a range of complementary analytical technologies. More than 1,000 metabolite signatures and 19 mineral elements were determined. Data analyses revealed variations related to factors such as variety, growing season, contrasting agricultural management practices (greenhouse vs. field with or without fruit thinning) and planting date. Two hundred and ninety-one analytes discriminated two contrasting varieties, one from the var. inodorous group and the other from the var. cantaloupensis group. Two hundred and eighty analytes discriminated a short shelf-life from a mid-shelf-life variety within the var. cantaloupensis group. Three hundred and twenty-seven analytes discriminated two seasons, and two hundred and fifty-two analytes discriminated two contrasting agricultural management practices. The affected compound families greatly depended on the factor studied. The compositional variability of identified or partially identified compounds was used to study metabolite and mineral element co-regulation using correlation networks. The results confirm that metabolome and mineral element profiling are useful diagnostic tools to characterize the quality of fruits cultivated under commercial conditions. They can also provide knowledge on fruit metabolism and the mechanisms of plant response to environmental modifications, thereby paving the way for metabolomics-guided improvement of cultural practices for better fruit quality.


The Plant Cell | 2014

Model-Assisted Analysis of Sugar Metabolism throughout Tomato Fruit Development Reveals Enzyme and Carrier Properties in Relation to Vacuole Expansion

Bertrand Beauvoit; Sophie Colombié; Antoine Monier; Marie-Hélène Andrieu; Benoît Biais; Camille Bénard; Catherine Chéniclet; Martine Dieuaide-Noubhani; Christine Nazaret; Jean-Pierre Mazat; Yves Gibon

A kinetic model combining enzyme activities and subcellular compartmentation was built to analyze the storage and interconversion of sugars in developing tomato fruit. This work shows that tonoplast carriers, sucrose hydrolysis, and accumulation of organic acids are major contributors to the vacuole expansion and the metabolic reprogramming that occur during early development. A kinetic model combining enzyme activity measurements and subcellular compartmentation was parameterized to fit the sucrose, hexose, and glucose-6-P contents of pericarp throughout tomato (Solanum lycopersicum) fruit development. The model was further validated using independent data obtained from domesticated and wild tomato species and on transgenic lines. A hierarchical clustering analysis of the calculated fluxes and enzyme capacities together revealed stage-dependent features. Cell division was characterized by a high sucrolytic activity of the vacuole, whereas sucrose cleavage during expansion was sustained by both sucrose synthase and neutral invertase, associated with minimal futile cycling. Most importantly, a tight correlation between flux rate and enzyme capacity was found for fructokinase and PPi-dependent phosphofructokinase during cell division and for sucrose synthase, UDP-glucopyrophosphorylase, and phosphoglucomutase during expansion, thus suggesting an adaptation of enzyme abundance to metabolic needs. In contrast, for most enzymes, flux rates varied irrespectively of enzyme capacities, and most enzymes functioned at <5% of their maximal catalytic capacity. One of the major findings with the model was the high accumulation of soluble sugars within the vacuole together with organic acids, thus enabling the osmotic-driven vacuole expansion that was found during cell division.


Metabolomics | 2012

A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties

Mariafe Calingacion; C. Boualaphanh; Venea Dara Daygon; R. Anacleto; R. Sackville Hamilton; Benoît Biais; Catherine Deborde; Mickaël Maucourt; Annick Moing; Roland Mumm; R. C. H. de Vos; Alexander Erban; Joachim Kopka; Thomas H. Hansen; Kristian Holst Laursen; Jan K. Schjoerring; Robert D. Hall; Melissa A. Fitzgerald

Using a novel approach combining four complementary metabolomic and mineral platforms with genome-wide genotyping at 1536 single nucleotide polymorphism (SNP) loci, we have investigated the extent of biochemical and genetic diversity in three commercially-relevant waxy rice cultivars important to food production in the Lao People’s Democratic Republic (PDR). Following cultivation with different nitrogen fertiliser regimes, multiple metabolomic data sets, including minerals, were produced and analysed using multivariate statistical methods to reveal the degree of similarity between the genotypes and to identify discriminatory compounds supported by multiple technology platforms. Results revealed little effect of nitrogen supply on metabolites related to quality, despite known yield differences. All platforms revealed unique metabolic signatures for each variety and many discriminatory compounds could be identified as being relevant to consumers in terms of nutritional value and taste or flavour. For each platform, metabolomic diversity was highly associated with genetic distance between the varieties. This study demonstrates that multiple metabolomic platforms have potential as phenotyping tools to assist breeders in their quest to combine key yield and quality characteristics. This better enables rice improvement programs to meet different consumer and farmer needs, and to address food security in rice-consuming countries.


Plant Journal | 2015

Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit.

Sophie Colombié; Christine Nazaret; Camille Bénard; Benoît Biais; Virginie Mengin; Marion Solé; Laetitia Fouillen; Martine Dieuaide-Noubhani; Jean-Pierre Mazat; Bertrand Beauvoit; Yves Gibon

Modelling of metabolic networks is a powerful tool to analyse the behaviour of developing plant organs, including fruits. Guided by our current understanding of heterotrophic metabolism of plant cells, a medium-scale stoichiometric model, including the balance of co–factors and energy, was constructed in order to describe metabolic shifts that occur through the nine sequential stages of Solanum lycopersicum (tomato) fruit development. The measured concentrations of the main biomass components and the accumulated metabolites in the pericarp, determined at each stage, were fitted in order to calculate, by derivation, the corresponding external fluxes. They were used as constraints to solve the model by minimizing the internal fluxes. The distribution of the calculated fluxes of central metabolism were then analysed and compared with known metabolic behaviours. For instance, the partition of the main metabolic pathways (glycolysis, pentose phosphate pathway, etc.) was relevant throughout fruit development. We also predicted a valid import of carbon and nitrogen by the fruit, as well as a consistent CO2 release. Interestingly, the energetic balance indicates that excess ATP is dissipated just before the onset of ripening, supporting the concept of the climacteric crisis. Finally, the apparent contradiction between calculated fluxes with low values compared with measured enzyme capacities suggest a complex reprogramming of the metabolic machinery during fruit development. With a powerful set of experimental data and an accurate definition of the metabolic system, this work provides important insight into the metabolic and physiological requirements of the developing tomato fruits.

Collaboration


Dive into the Benoît Biais's collaboration.

Top Co-Authors

Avatar

Annick Moing

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Deborde

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dominique Rolin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Yves Gibon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mickaël Maucourt

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Stéphane Bernillon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camille Bénard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Michel Mérillon

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge