Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benoît de Chassey is active.

Publication


Featured researches published by Benoît de Chassey.


Nucleic Acids Research | 2009

VirHostNet: a knowledge base for the management and the analysis of proteome-wide virus–host interaction networks

Vincent Navratil; Benoît de Chassey; L. Meyniel; Stéphane Delmotte; Christian Gautier; Patrice André; Vincent Lotteau; Chantal Rabourdin-Combe

Infectious diseases caused by viral agents kill millions of people every year. The improvement of prevention and treatment of viral infections and their associated diseases remains one of the main public health challenges. Towards this goal, deciphering virus–host molecular interactions opens new perspectives to understand the biology of infection and for the design of new antiviral strategies. Indeed, modelling of an infection network between viral and cellular proteins will provide a conceptual and analytic framework to efficiently formulate new biological hypothesis at the proteome scale and to rationalize drug discovery. Therefore, we present the first release of VirHostNet (Virus–Host Network), a public knowledge base specialized in the management and analysis of integrated virus–virus, virus–host and host–host interaction networks coupled to their functional annotations. VirHostNet integrates an extensive and original literature-curated dataset of virus–virus and virus–host interactions (2671 non-redundant interactions) representing more than 180 distinct viral species and one of the largest human interactome (10 672 proteins and 68 252 non-redundant interactions) reconstructed from publicly available data. The VirHostNet Web interface provides appropriate tools that allow efficient query and visualization of this infected cellular network. Public access to the VirHostNet knowledge-based system is available at http://pbildb1.univ-lyon1.fr/virhostnet.


European Journal of Cell Biology | 2001

Membrane sorting in the endocytic and phagocytic pathway of Dictyostelium discoideum.

Kissia Ravanel; Benoît de Chassey; Sophie Cornillon; Mohammed Benghezal; Laurence Zulianello; Leigh Gebbie; François Letourneur; Pierre Cosson

To study sorting in the endocytic pathway of a phagocytic and macropinocytic cell, monoclonal antibodies to membrane proteins of Dictyostelium discoideum were generated. Whereas the p25 protein was localized to the cell surface, p80 was mostly present in intracellular endocytic compartments as observed by immunofluorescence as well as immunoelectron microscopy analysis. The p80 gene was identified and encodes a membrane protein presumably involved in copper transport. Expression of chimeric proteins revealed that the cytoplasmic domain of p80 was sufficient to cause constitutive endocytosis and localization of the protein to endocytic compartments. Dileucine- and tyrosine-based endocytic signals described previously in mammalian systems were also capable of targeting chimera to endocytic compartments. In phagocytosing cells no membrane sorting was observed during formation of the phagosome. Both p25 and p80 were incorporated non-selectively in nascent phagosomes, and then retrieved shortly after phagosome closure. Our results emphasize the fact that very active membrane traffic takes place in phagocytic and macropinocytic cells. This is coupled with precise membrane sorting to maintain the specific composition of endocytic compartments.


BMC Systems Biology | 2011

When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases

Vincent Navratil; Benoît de Chassey; Chantal Combe; Vincent Lotteau

BackgroundComprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput -omics data.ResultsHere, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus.ConclusionsThe Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases.


Molecular & Cellular Proteomics | 2014

Elucidating Novel Hepatitis C Virus–Host Interactions Using Combined Mass Spectrometry and Functional Genomics Approaches

Marie-Anne Germain; Laurent Chatel-Chaix; Bridget Gagné; Eric Bonneil; Pierre Thibault; Fabrine Pradezynski; Benoît de Chassey; Laurène Meyniel-Schicklin; Vincent Lotteau; Martin Baril; Daniel Lamarre

More than 170 million people worldwide are infected with the hepatitis C virus (HCV), for which future therapies are expected to rely upon a combination of oral antivirals. For a rapidly evolving virus like HCV, host-targeting antivirals are an attractive option. To decipher the role of novel HCV–host interactions, we used a proteomics approach combining immunoprecipitation of viral–host protein complexes coupled to mass spectrometry identification and functional genomics RNA interference screening of HCV partners. Here, we report the proteomics analyses of protein complexes associated with Core, NS2, NS3/4A, NS4B, NS5A, and NS5B proteins. We identified a stringent set of 98 human proteins interacting specifically with one of the viral proteins. The overlap with previous virus–host interaction studies demonstrates 24.5% shared HCV interactors overall (24/98), illustrating the reliability of the approach. The identified human proteins show enriched Gene Ontology terms associated with the endoplasmic reticulum, transport proteins with a major contribution of NS3/4A interactors, and transmembrane proteins for Core interactors. The interaction network emphasizes a high degree distribution, a high betweenness distribution, and high interconnectivity of targeted human proteins, in agreement with previous virus–host interactome studies. The set of HCV interactors also shows extensive enrichment for known targets of other viruses. The combined proteomic and gene silencing study revealed strong enrichment in modulators of HCV RNA replication, with the identification of 11 novel cofactors among our set of specific HCV partners. Finally, we report a novel immune evasion mechanism of NS3/4A protein based on its ability to affect nucleocytoplasmic transport of type I interferon-mediated signal transducer and activator of transcription 1 nuclear translocation. The study revealed highly stringent association between HCV interactors and their functional contribution to the viral replication cycle and pathogenesis.


PLOS Pathogens | 2013

The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

Benoît de Chassey; Anne Aublin-Gex; Alessia Ruggieri; Laurène Meyniel-Schicklin; Fabrine Pradezynski; Nathalie Davoust; Thibault Chantier; Lionel Tafforeau; Philippe-Emmanuel Mangeot; Claire Ciancia; Laure Perrin-Cocon; Ralf Bartenschlager; Patrice André; Vincent Lotteau

Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.


Current Opinion in Virology | 2012

New horizons for antiviral drug discovery from virus-host protein interaction networks.

Benoît de Chassey; Laurène Meyniel-Schicklin; Anne Aublin-Gex; Patrice André; Vincent Lotteau

Viruses are recurrent socio economical and health problems each year worldwide. Current drugs are mainly directed against viral components and select resistant strains that urge the need to develop new antiviral therapeutics. High-throughput screening technologies now allow to draw comprehensive genome-wide maps of physical and genetic virus-host interactions. This has been done recently for several viruses such as HIV, HCV, DENV and FLUAV and revealed a wealth of potential antiviral cellular targets. Systems-level analysis of virus-host protein networks and subnetworks begins to uncover several specific points of intervention for a human centered drug development. We present here this new paradigm in antiviral drug discovery together with the first promising antiviral molecules.


Genome Medicine | 2014

Virus-host interactomics: new insights and opportunities for antiviral drug discovery

Benoît de Chassey; Laurène Meyniel-Schicklin; Jacky Vonderscher; Patrice André; Vincent Lotteau

The current therapeutic arsenal against viral infections remains limited, with often poor efficacy and incomplete coverage, and appears inadequate to face the emergence of drug resistance. Our understanding of viral biology and pathophysiology and our ability to develop a more effective antiviral arsenal would greatly benefit from a more comprehensive picture of the events that lead to viral replication and associated symptoms. Towards this goal, the construction of virus-host interactomes is instrumental, mainly relying on the assumption that a viral infection at the cellular level can be viewed as a number of perturbations introduced into the host protein network when viral proteins make new connections and disrupt existing ones. Here, we review advances in interactomic approaches for viral infections, focusing on high-throughput screening (HTS) technologies and on the generation of high-quality datasets. We show how these are already beginning to offer intriguing perspectives in terms of virus-host cell biology and the control of cellular functions, and we conclude by offering a summary of the current situation regarding the potential development of host-oriented antiviral therapeutics.


Molecular & Cellular Proteomics | 2012

Viruses and Interactomes in Translation

Laurène Meyniel-Schicklin; Benoît de Chassey; Patrice André; Vincent Lotteau

A decade of high-throughput screenings for intraviral and virus-host protein-protein interactions led to the accumulation of data and to the development of theories on laws governing interactome organization for many viruses. We present here a computational analysis of intraviral protein networks (EBV, FLUAV, HCV, HSV-1, KSHV, SARS-CoV, VACV, and VZV) and virus-host protein networks (DENV, EBV, FLUAV, HCV, and VACV) from up-to-date interaction data, using various mathematical approaches. If intraviral networks seem to behave similarly, they are clearly different from the human interactome. Viral proteins target highly central human proteins, which are precisely the Achilles heel of the human interactome. The intrinsic structural disorder is a distinctive feature of viral hubs in virus-host interactomes. Overlaps between virus-host data sets identify a core of human proteins involved in the cellular response to viral infection and in the viral capacity to hijack the cell machinery for viral replication. Host proteins that are strongly targeted by a virus seem to be particularly attractive for other viruses. Such protein-protein interaction networks and their analysis represent a powerful resource from a therapeutic perspective.


Molecular & Cellular Proteomics | 2007

An Antiproliferative Genetic Screening Identifies a Peptide Aptamer That Targets Calcineurin and Up-regulates Its Activity

Benoît de Chassey; Ivan Mikaelian; Anne-Laure Mathieu; Marc Bickle; Delphine Olivier; Didier Nègre; François-Loïc Cosset; Brian B. Rudkin; Pierre Colas

Peptide aptamers are combinatorial recognition molecules that consist of a constant scaffold protein displaying a doubly constrained variable peptide loop. They bind specifically target proteins and interfere with their function. We have built a peptide aptamer library in a lentiviral expression system to isolate aptamers that inhibit cell proliferation in vitro. Using one of the isolated aptamers (R5G42) as a bait protein, we have performed yeast two-hybrid screening of cDNA libraries and identified calcineurin A as a target protein candidate. R5G42 bound calcineurin A in vitro and stimulated its phosphatase activity. When expressed transiently in human cells, R5G42 induced the dephosphorylation of BAD. We have identified an antiproliferative peptide aptamer that binds calcineurin and stimulates its activity. The use of this ligand may help elucidate the still elusive structural mechanisms of activation and inhibition of calcineurin. Our work illustrates the power of phenotypic screening of combinatorial protein libraries to interrogate the proteome and chart molecular regulatory networks.


BMC Research Notes | 2009

pISTil: a pipeline for yeast two-hybrid Interaction Sequence Tags identification and analysis

Johann Pellet; Laurène Meyniel; Pierre-Olivier Vidalain; Benoît de Chassey; Lionel Tafforeau; Vincent Lotteau; Chantal Rabourdin-Combe; Vincent Navratil

BackgroundHigh-throughput screening of protein-protein interactions opens new systems biology perspectives for the comprehensive understanding of cell physiology in normal and pathological conditions. In this context, yeast two-hybrid system appears as a promising approach to efficiently reconstruct protein interaction networks at the proteome-wide scale. This protein interaction screening method generates a large amount of raw sequence data, i.e. the ISTs (Interaction Sequence Tags), which urgently need appropriate tools for their systematic and standardised analysis.FindingsWe develop pISTil, a bioinformatics pipeline combined with a user-friendly web-interface: (i) to establish a standardised system to analyse and to annotate ISTs generated by two-hybrid technologies with high performance and flexibility and (ii) to provide high-quality protein-protein interaction datasets for systems-level approach. This pipeline has been validated on a large dataset comprising more than 11.000 ISTs. As a case study, a detailed analysis of ISTs obtained from yeast two-hybrid screens of Hepatitis C Virus proteins against human cDNA libraries is also provided.ConclusionWe have developed pISTil, an open source pipeline made of a collection of several applications governed by a Perl script. The pISTil pipeline is intended to laboratories, with IT-expertise in system administration, scripting and database management, willing to automatically process large amount of ISTs data for accurate reconstruction of protein interaction networks in a systems biology perspective. pISTil is publicly available for download at http://sourceforge.net/projects/pistil.

Collaboration


Dive into the Benoît de Chassey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian B. Rudkin

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Mikaelian

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge