Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benoit de Thoisy is active.

Publication


Featured researches published by Benoit de Thoisy.


Journal of Virology | 2008

Novel mammalian herpesviruses and lineages within the Gammaherpesvirinae: cospeciation and interspecies transfer.

Bernhard Ehlers; Güzin Dural; Nezlisah Yasmum; Tiziana Lembo; Benoit de Thoisy; Marie-Pierre Ryser-Degiorgis; Rainer G. Ulrich; Duncan J. McGeoch

ABSTRACT Novel members of the subfamily Gammaherpesvirinae, hosted by eight mammalian species from six orders (Primates, Artiodactyla, Perissodactyla, Carnivora, Scandentia, and Eulipotyphla), were discovered using PCR with pan-herpesvirus DNA polymerase (DPOL) gene primers and genus-specific glycoprotein B (gB) gene primers. The gB and DPOL sequences of each virus species were connected by long-distance PCR, and contiguous sequences of approximately 3.4 kbp were compiled. Six additional gammaherpesviruses from four mammalian host orders (Artiodactyla, Perissodactyla, Primates, and Proboscidea), for which only short DPOL sequences were known, were analyzed in the same manner. Together with available corresponding sequences for 31 other gammaherpesviruses, alignments of encoded amino acid sequences were made and used for phylogenetic analyses by maximum-likelihood and Bayesian Monte Carlo Markov chain methods to derive a tree which contained two major loci of unresolved branching details. The tree was rooted by parallel analyses that included alpha- and betaherpesvirus sequences. This gammaherpesvirus tree contains 11 major lineages and presents the widest view to date of phylogenetic relationships in any subfamily of the Herpesviridae, as well as the most complex in the number of deep lineages. The trees branching pattern can be interpreted only in part in terms of the cospeciation of virus and host lineages, and a substantial incidence of the interspecies transfer of viruses must also be invoked.


Vector-borne and Zoonotic Diseases | 2009

Dengue Infection in Neotropical Forest Mammals

Benoit de Thoisy; Vincent Lacoste; Adeline Germain; Jorge L. Muñoz-Jordán; Candimar Colón; Jean-François Mauffrey; Marguerite Delaval; François Catzeflis; Mirdad Kazanji; Séverine Matheus; Philippe Dussart; Jacques Morvan; Alvaro Aguilar Setién; Xavier Deparis; Anne Lavergne

In South America, dengue is the arbovirus-transmitted disease with the highest incidence. Unlike other arboviruses, wild mammals have no confirmed role in the cycle of dengue in the neotropics, although serological studies have suggested a possible secondary amplification cycle involving mammals other than nonhuman primates. In French Guiana, where all four serotypes (DENV-1, DENV-2, DENV-3, DENV-4) are present, the disease is endemic with outbreak events. To determine whether wild mammals can be infected by DENV, rodents, marsupials, and bats were captured over several periods, from 2001 to 2007, at two sites. The first location is a secondary forest surrounded by an urban area where dengue is endemic. The second location is a forest edge site where the disease has not yet emerged. A total of 10,000 trap-nights were performed and 616 mammals were captured. RNAs representing the four DENV serotypes were detected at both sites by reverse-transcriptase polymerase chain reaction in the livers and/or sera of 92 mammals belonging to 14 out of 32 species distributed among all the orders investigated: Rodentia (33 positive/146 tested), Marsupialia (40/318), and Chiroptera (19/152). Sequence analyses of a portion of the capsid and premembrane junction revealed that mammal strains of DENV-1, DENV-2, DENV-3, and DENV-4 had only 92.6%, 89%, 95%, and 95.8% identity, respectively, with strains circulating in the human population during the same periods. Regarding DENV-2, strains related (99% identity) to those responsible for an epidemic event in humans in French Guiana concurrent to the capture sessions were also evidenced, suggesting that wild mammals in edge habitats can be infected by circulating human strains. Our results demonstrate, for the first time, that neotropical wild mammals can be infected with dengue virus. The question of whether mammals maintain DENV in enzootic cycles and can play a role in its reemergence in human populations remains to be answered.


Journal of Virology | 2000

Lymphoid Organs as a Major Reservoir for Human T-Cell Leukemia Virus Type 1 in Experimentally Infected Squirrel Monkeys (Saimiri sciureus): Provirus Expression, Persistence, and Humoral and Cellular Immune Responses

Mirdad Kazanji; Abel Ureta-Vidal; Simona Ozden; Frédéric Tangy; Benoit de Thoisy; Laurence Fiette; Antoine Talarmin; Antoine Gessain

The aim of this study was to investigate the distribution of human T-cell leukemia virus type 1 (HTLV-1) in various organs of serially sacrificed squirrel monkeys (Saimiri sciureus) in order to localize the reservoir of the virus and to evaluate the relationship between viral expression and the humoral or cellular immune response during infection. Six squirrel monkeys infected with HTLV-1 were sacrificed 6, 12, and 35 days and 3, 6, and 26 months after inoculation, and 20 organs and tissues were collected from each animal. PCR and reverse transcription-PCR (RT-PCR) were performed with gag and tax primers. Proviral DNA was detected by PCR in peripheral blood mononuclear cells (PBMCs) of monkeys sacrificed 6 days after inoculation and in PBMCs, spleens, and lymph nodes of monkeys sacrificed 12 and 35 days and 3, 6, and 26 months after inoculation. Furthermore, tax/rex mRNA was detected by RT-PCR in the PBMCs of two monkeys 8 to 12 days after inoculation and in the spleens and lymph nodes of the monkey sacrificed on day 12. In this animal, scattered HTLV-1 tax/rex mRNA-positive lymphocytes were detected by in situ hybridization in frozen sections of the spleen, around the germinal centers and close to the arterial capillaries. Anti-HTLV-1 cell-mediated immunity was evaluated at various times after inoculation. Anti-p40(Tax) and anti-Env cytolytic T-cell responses were detected 2 months after infection and remained detectable thereafter. When Tax peptides were used, this response appeared to be directed against various Tax epitopes. Our results indicate that squirrel monkeys represent a promising animal model for studying the early events of HTLV-1 infection and for evaluating candidate vaccines against HTLV-1.


Journal of Virology | 2001

Two-Step Nature of Human T-Cell Leukemia Virus Type 1 Replication in Experimentally Infected Squirrel Monkeys (Saimiri sciureus)

Franck Mortreux; Mirdad Kazanji; Anne-Sophie Gabet; Benoit de Thoisy; Eric Wattel

ABSTRACT After experimental infection of squirrel monkeys (Saimiri sciureus) with human T-cell leukemia virus type 1 (HTLV-1)-infected cells, the virus is transcribed only transiently in circulating blood, spleen, and lymph nodes. Stable disappearance of viral expression occurs at 2 to 3 weeks after inoculation. This coincides with the development of the anti-HTLV-1 immune response and persistent detection of the provirus in peripheral blood mononuclear cells (PBMCs). In this study, the HTLV-1 replication pattern was analyzed over time in PBMCs and various organs from two HTLV-1-infected squirrel monkeys. Real-time quantitative PCR confirmed that PBMCs and lymphoid organs constitute the major reservoirs for HTLV-1. The PCR amplification of HTLV-1 flanking sequences from PBMCs evidenced a pattern of clonal expansion of infected cells identical to that observed in humans. Dissemination of the virus in body compartments appeared to result from cellular transport of the integrated provirus. The circulating proviral burden increased as a function of time in one animal studied over a period of 4 years. The high proviral loads observed in the last samples resulted from the accumulation of infected cells via the extensive proliferation of a restricted number of persistent clones on a background of polyclonally expanded HTLV-1-positive cells. Therefore, HTLV-1 primary infection in squirrel monkeys is a two-step process involving a transient phase of reverse transcription followed by persistent multiplication of infected cells. This suggests that the choice of the target for blocking HTLV-1 replication might depend on the stage of infection.


Journal of Virology | 2001

Immunogenicity and Protective Efficacy of Recombinant Human T-Cell Leukemia/Lymphoma Virus Type 1 NYVAC and Naked DNA Vaccine Candidates in Squirrel Monkeys (Saimiri sciureus)

Mirdad Kazanji; James Tartaglia; Genoveffa Franchini; Benoit de Thoisy; Antoine Talarmin; Hugues Contamin; Antoine Gessain

ABSTRACT We assessed the immunogenicities and efficacies of two highly attenuated vaccinia virus-derived NYVAC vaccine candidates encoding the human T-cell leukemia/lymphoma virus type 1 (HTLV-1) envgene or both the env and gag genes in prime-boost pilot regimens in combination with naked DNA expressing the HTLV-1 envelope. Three inoculations of NYVAC HTLV-1 envat 0, 1, and 3 months followed by a single inoculation of DNAenv at 9 months protected against intravenous challenge with HTLV-1-infected cells in one of three immunized squirrel monkeys. Furthermore, humoral and cell-mediated immune responses against HTLV-1 Env could be detected in this protected animal. However, priming the animal with a single dose of env DNA, followed by immunization with the NYVAC HTLV-1 gag andenv vaccine at 6, 7, and 8 months, protected all three animals against challenge with HTLV-1-infected cells. With this protocol, antibodies against HTLV-1 Env and cell-mediated responses against Env and Gag could also be detected in the protected animals. Although the relative superiority of a DNA prime-NYVAC boost regimen over addition of the Gag component as an immunogen cannot be assessed directly, our findings nevertheless show that an HTLV-1 vaccine approach is feasible and deserves further study.


American Journal of Primatology | 2010

Phylogeny and phylogeography of squirrel monkeys (genus Saimiri) based on cytochrome b genetic analysis.

Anne Lavergne; Manuel Ruiz-García; François Catzeflis; Sandra Lacote; Hugues Contamin; Odile Mercereau-Puijalon; Vincent Lacoste; Benoit de Thoisy

Squirrel monkeys (genus Saimiri) are distributed over a wide area encompassing the Amazon Basin: French Guiana, Suriname, and Guyana, together with Western Panama and Western Costa Rica. The genus Saimiri includes a complex of species and subspecies displaying considerable morphological variation. Taxonomic and systematic studies have identified, in this genus, one to seven species comprising up to 16 subspecies. The phylogenetic relationships between these taxa are poorly understood. Molecular markers have yielded a consistent framework for the systematics of Central and South American Saimiri, identifying four distinct clades: S. oerstedii, S. sciureus, S. boliviensis, and S. ustus. Here, we reconsider the phylogenetic and biogeographic history of Saimiri on the basis of mitochondrial (mtDNA) sequence data, focusing mostly on individuals originating from the Amazon Basin. We studied 32 monkeys with well‐defined geographic origins and inferred the phylogenetic relationships between them on the basis of full‐length cytochrome b gene nucleotide sequences. The high level of gene diversity observed (0.966) is consistent with the high level of behavioral and morphological variation observed across the geographic range of the genus: 20 mtDNA haplotypes were identified with a maximum divergence of 4.81% between S. b. boliviensis and S. ustus. In addition to confirming the existence of the four clades previously identified on the basis of molecular characters, we suggest several new lineages, including S. s. macrodon, S. s. albigena, S. s. cassiquiarensis, and S. s. collinsi. We also propose new patterns of dispersion and diversification for the genus Saimiri, and discuss the contribution of certain rivers and forest refuges to its structuring. Am. J. Primatol. 72:242–253, 2010.


Journal of Mammalogy | 2013

A new species of tapir from the Amazon

Mario Alberto Cozzuol; Camila L. Clozato; E Lizete C. Holanda; S Amuel Nienow; Benoit de Thoisy; A. F. Redondo; Fabrr . Santos

Abstract All known species of extant tapirs are allopatric: 1 in southeastern Asia and 3 in Central and South America. The fossil record for tapirs, however, is much wider in geographical range, including Europe, Asia, and North and South America, going back to the late Oligocene, making the present distribution a relict of the original one. We here describe a new species of living Tapirus from the Amazon rain forest, the 1st since T. bairdii Gill, 1865, and the 1st new Perissodactyla in more than 100 years, from both morphological and molecular characters. It is shorter in stature than T. terrestris (Linnaeus, 1758) and has distinctive skull morphology, and it is basal to the clade formed by T. terrestris and T. pinchaque (Roulin, 1829). This highlights the unrecognized biodiversity in western Amazonia, where the biota faces increasing threats. Local peoples have long recognized our new species, suggesting a key role for traditional knowledge in understanding the biodiversity of the region. Resumo Todas as espécies conhecidas de antas viventes são alopátricas: 1 no sudeste da Ásia e as 3 na América Central e América do Sul. Entretanto, o registro fóssil para antas é mais amplo geograficamente, incluindo Europa, Ásia, América do Norte e do Sul, encontrados desde o Oligoceno tardio, tornando a distribuição atual um relicto da original. Descrevemos aqui uma nova espécie de Tapirus vivente da floresta amazônica, a primeira desde T. bairdii Gill, 1865, e o primeiro novo Perissodactyla em mais de 100 anos, a partir de caracteres morfológicos e moleculares. O novo táxon é menor em estatura do que T. terrestris (Linnaeus, 1758) com morfologia distinta do crânio, sendo basal ao clado formado por T. terrestris e T. pinchaque (Roulin, 1829). Esta descoberta destaca a biodiversidade oculta no oeste da Amazônia, onde a biota enfrenta ameaças crescentes. Alguns povos locais há muito tempo reconheceram esta nova espécie, sugerindo um papel fundamental para o conhecimento tradicional na compreensão da biodiversidade da região.


Emerging Infectious Diseases | 2003

Mayaro Virus in Wild Mammals, French Guiana

Benoit de Thoisy; Jacques Gardon; Rosa Alba Salas; Jacques Morvan; Mirdad Kazanji

A serologic survey for Mayaro virus (Alphavirus, Togaviridae) in 28 wild nonflying forest mammal species in French Guiana showed a prevalence ranging from 0% to 52% and increasing with age. Species active during the day and those who spent time in trees were significantly more infected, results consistent with transmission implicating diurnal mosquitoes and continuous infectious pressure.


BMC Evolutionary Biology | 2010

Population history, phylogeography, and conservation genetics of the last Neotropical mega-herbivore, the lowland tapir (Tapirus terrestris)

Benoit de Thoisy; Anders Gonçalves da Silva; Manuel Ruiz-García; Andrés Tapia; Oswaldo Ramirez; Margarita Arana; Viviana Quse; César Paz-y-Miño; Mathias W. Tobler; Carlos A. Pedraza; Anne Lavergne

BackgroundUnderstanding the forces that shaped Neotropical diversity is central issue to explain tropical biodiversity and inform conservation action; yet few studies have examined large, widespread species. Lowland tapir (Tapirus terrrestris, Perissodactyla, Tapiridae) is the largest Neotropical herbivore whose ancestors arrived in South America during the Great American Biotic Interchange. A Pleistocene diversification is inferred for the genus Tapirus from the fossil record, but only two species survived the Pleistocene megafauna extinction. Here, we investigate the history of lowland tapir as revealed by variation at the mitochondrial gene Cytochrome b, compare it to the fossil data, and explore mechanisms that could have shaped the observed structure of current populations.ResultsSeparate methodological approaches found mutually exclusive divergence times for lowland tapir, either in the late or in the early Pleistocene, although a late Pleistocene divergence is more in tune with the fossil record. Bayesian analysis favored mountain tapir (T. pinchaque) paraphyly in relation to lowland tapir over reciprocal monophyly, corroborating the inferences from the fossil data these species are sister taxa. A coalescent-based analysis rejected a null hypothesis of allopatric divergence, suggesting a complex history. Based on the geographic distribution of haplotypes we propose (i) a central role for western Amazonia in tapir diversification, with a key role of the ecological gradient along the transition between Andean subcloud forests and Amazon lowland forest, and (ii) that the Amazon river acted as an barrier to gene flow. Finally, the branching patterns and estimates based on nucleotide diversity indicate a population expansion after the Last Glacial Maximum.ConclusionsThis study is the first examining lowland tapir phylogeography. Climatic events at the end of the Pleistocene, parapatric speciation, divergence along the Andean foothill, and role of the Amazon river, have similarly shaped the history of other taxa. Nevertheless further work with additional samples and loci is needed to improve our initial assessment. From a conservation perspective, we did not find a correspondence between genetic structure in lowland tapir and ecogeographic regions proposed to define conservation priorities in the Neotropics. This discrepancy sheds doubt into this schemes ability to generate effective conservation planning for vagile species.


American Journal of Primatology | 1998

Anesthesia of wild red howler monkeys (Alouatta seniculus) with medetomidine/ketamine and reversal by atipamezole

J.-Christophe Vié; Benoit de Thoisy; Pascal Fournier; Christine Fournier-Chambrillon; Christophe Genty; Joël Kéravec

Wild red howler monkeys (Alouatta seniculus) were translocated during the flooding of the forest at a hydroelectric dam site in French Guiana. For a variety of minor clinical procedures, 96 monkeys were anesthetized with various intramuscular injections of combinations of medetomidine and ketamine. The howler population was composed of healthy animals (42 males and 54 females) of various ages. Medetomidine (150 μg/kg) associated with ketamine (4 mg/kg) gave the best results and was used on 63 animals. The injection rapidly resulted in complete immobilization with good to excellent myorelaxation. The induction stage was quiet, with absence of both corneal and pedal withdrawal reflexes in 57 animals after 2.9 ± 1.4 min. Six animals required an additional injection. Rectal temperature and respiratory and heart rates decreased during anesthesia, whereas relative oxyhemoglobin saturation increased. One death occurred during anesthesia. One abortion and one death also occurred the day following anesthesia but were more probably a result of capture stress. Atipamezole given i.m. at a dose of five times the medetomidine dose 38.4 ± 8.0 min after the anesthetic injection led to standing recovery in 7.1 ± 4.5 min. Spontaneous recovery occurred in 17 animals before the atipamezole injection after an average of 30.6 ± 9.6 min. Total recovery time was shorter in young animals. Medetomidine/ketamine induced good myorelaxation and provided considerably shortened immobilization duration, which are two notable advantages for field studies. We recommend this association for short procedures including minor surgery in red howler monkeys. Am. J. Primatol. 45:399–410, 1998.

Collaboration


Dive into the Benoit de Thoisy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvon Le Maho

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge