Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benoit Gamain is active.

Publication


Featured researches published by Benoit Gamain.


EMBO Reports | 2005

A single member of the Plasmodium falciparum var multigene family determines cytoadhesion to the placental receptor chondroitin sulphate A

Nicola K. Viebig; Benoit Gamain; Christine Scheidig; Catherine Lépolard; Jude M. Przyborski; Michael Lanzer; Jürg Gysin; Artur Scherf

In high‐transmission regions, protective clinical immunity to Plasmodium falciparum develops during the early years of life, limiting serious complications of malaria in young children. Pregnant women are an exception and are especially susceptible to severe P. falciparum infections resulting from the massive adhesion of parasitized erythrocytes to chondroitin sulphate A (CSA) present on placental syncytiotrophoblasts. Epidemiological studies strongly support the feasibility of an intervention strategy to protect pregnant women from disease. However, different parasite molecules have been associated with adhesion to CSA. In this work, we show that disruption of the var2csa gene of P. falciparum results in the inability of parasites to recover the CSA‐binding phenotype. This gene is a member of the var multigene family and was previously shown to be composed of domains that mediate binding to CSA. Our results show the central role of var2CSA in CSA adhesion and support var2CSA as a leading vaccine candidate aimed at protecting pregnant women and their fetuses.


The Journal of Infectious Diseases | 2005

Identification of Multiple Chondroitin Sulfate A (CSA)–Binding Domains in the var2CSA Gene Transcribed in CSA-Binding Parasites

Benoit Gamain; Adama R. Trimnell; Christine Scheidig; Artur Scherf; Louis H. Miller; Joseph D. Smith

Malaria in pregnancy is a serious complication associated with parasitized erythrocyte (PE) sequestration in the placenta. Recent work suggests that var genes could play an important role in PE binding to chondroitin sulfate A (CSA), a primary placental adherence receptor. Here, we confirm that var2CSA is transcriptionally up-regulated in CSA-binding parasites and define CSA-binding domains in var2CSA. The identification of multiple binding domains in var2CSA strengthens the evidence for their involvement in malaria during pregnancy and may have applications for the development of a vaccine against malaria in pregnancy.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Full-length extracellular region of the var2CSA variant of PfEMP1 is required for specific, high-affinity binding to CSA

Anand K. Srivastava; Stéphane Gangnard; Adam Round; Sébastien Dechavanne; Alexandre Juillerat; Bertrand Raynal; Grazyna Faure; Bruno Baron; Stéphanie Ramboarina; Saurabh Kumar Singh; Hassan Belrhali; Patrick England; Anita Lewit-Bentley; Artur Scherf; Graham A. Bentley; Benoit Gamain

Pregnancy-associated malaria (PAM) is a serious consequence of sequestration of Plasmodium falciparum-parasitized erythrocytes (PE) in the placenta through adhesion to chondroitin sulfate A (CSA) present on placental proteoglycans. Recent work implicates var2CSA, a member of the PfEMP1 family, as the mediator of placental sequestration and as a key target for PAM vaccine development. Var2CSA is a 350 kDa transmembrane protein, whose extracellular region includes six Duffy-binding-like (DBL) domains. Due to its size and high cysteine content, the full-length var2CSA extracellular region has not hitherto been expressed in heterologous systems, thus limiting investigations to individual recombinant domains. Here we report for the first time the expression of the full-length var2CSA extracellular region (domains DBL1X to DBL6ε) from the 3D7 parasite strain using the human embryonic kidney 293 cell line. We show that the recombinant extracellular var2CSA region is correctly folded and that, unlike the individual DBL domains, it binds with high affinity and specificity to CSA (KD = 61 nM) and efficiently inhibits PE from binding to CSA. Structural characterization by analytical ultracentrifugation and small-angle x-ray scattering reveals a compact organization of the full-length protein, most likely governed by specific interdomain interactions, rather than an extended structure. Collectively, these data suggest that a high-affinity, CSA-specific binding site is formed by the higher-order structure of the var2CSA extracellular region. These results have important consequences for the development of an effective vaccine and therapeutic inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Immunization of Aotus monkeys with a functional domain of the Plasmodium falciparum variant antigen induces protection against a lethal parasite line

Dror I. Baruch; Benoit Gamain; John W. Barnwell; JoAnn S. Sullivan; Anthony Stowers; G. Gale Galland; Louis H. Miller; William E. Collins

Immunity to Plasmodium falciparum in African children has been correlated with antibodies to the P. falciparum erythrocyte membrane protein 1 (PfEMP1) variant gene family expressed on the surface of infected red cells. We immunized Aotus monkeys with a subregion of the Malayan Camp variant antigen (MCvar1) that mediates adhesion to the host receptor CD36 on the endothelial surface and present data that PfEMP1 is an important target for vaccine development. The immunization induced a high level of protection against the homologous strain. Protection correlated with the titer of agglutinating antibodies and occurred despite the expression of variant copies of the gene during recurrent waves of parasitemia. A second challenge with a different P. falciparum strain, to which there was no agglutinating activity, showed no protection but boosted the immune response to this region during the infection. The level of protection and the evidence of boosting during infection encourage further exploration of this concept for malaria vaccine development.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Molecular basis for the dichotomy in Plasmodium falciparum adhesion to CD36 and chondroitin sulfate A

Benoit Gamain; Sylvie Gratepanche; Louis H. Miller; Dror I. Baruch

Plasmodium falciparum-infected erythrocytes adhere dichotomously to the host receptors CD36 and chondroitin sulfate A (CSA). This dichotomy is associated with parasite sequestration to microvasculature beds (CD36) or placenta (CSA), leading to site-specific pathogenesis. Both properties are mediated by members of the variant P. falciparum erythrocyte membrane protein 1 (PfEMP-1) family and reside on nonoverlapping domains of the molecule. To identify the molecular basis for the apparent dichotomy, we expressed various domains of PfEMP-1 individually or in combination and tested their binding properties. We found that the CD36-binding mode of the cysteine-rich interdomain region-1 (CIDR1) ablates the ability of the Duffy binding-like γ domain to bind CSA. In contrast, neither a non-CD36-binding CIDR1 nor an intercellular adhesion molecule 1 binding domain had any affect on CSA binding. Our findings point out that interactions between different domains of PfEMP-1 can alter the adhesion phenotype of infected erythrocytes and provide a molecular basis for the apparent dichotomy in adhesion. We suggest that the basis for the dichotomy is structural and that mutually exclusive conformations of PfEMP-1 are involved in binding to CD36 or CSA. Furthermore, we propose a model explaining the requirement for structural dichotomy between placental and nonplacental isolates.


PLOS ONE | 2007

Disruption of var2csa gene impairs placental malaria associated adhesion phenotype.

Nicola K. Viebig; Emily Levin; Sébastien Dechavanne; Stephen J. Rogerson; Jürg Gysin; Joseph D. Smith; Artur Scherf; Benoit Gamain

Infection with Plasmodium falciparum during pregnancy is one of the major causes of malaria related morbidity and mortality in newborn and mothers. The complications of pregnancy-associated malaria result mainly from massive adhesion of Plasmodium falciparum-infected erythrocytes (IE) to chondroitin sulfate A (CSA) present in the placental intervillous blood spaces. Var2CSA, a member of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family is the predominant parasite ligand mediating CSA binding. However, experimental evidence suggests that other host receptors, such as hyaluronic acid (HA) and the neonatal Fc receptor, may also support placental binding. Here we used parasites in which var2csa was genetically disrupted to evaluate the contribution of these receptors to placental sequestration and to identify additional adhesion receptors that may be involved in pregnancy-associated malaria. By comparison to the wild-type parasites, the FCR3Δvar2csa mutants could not be selected for HA adhesion, indicating that var2csa is not only essential for IE cytoadhesion to the placental receptor CSA, but also to HA. However, further studies using different pure sources of HA revealed that the previously observed binding results from CSA contamination in the bovine vitreous humor HA preparation. To identify CSA-independent placental interactions, FCR3Δvar2csa mutant parasites were selected for adhesion to the human placental trophoblastic BeWo cell line. BeWo selected parasites revealed a multi-phenotypic adhesion population expressing multiple var genes. However, these parasites did not cytoadhere specifically to the syncytiotrophoblast lining of placental cryosections and were not recognized by sera from malaria-exposed women in a parity dependent manner, indicating that the surface molecules present on the surface of the BeWo selected population are not specifically expressed during the course of pregnancy-associated malaria. Taken together, these results demonstrate that the placental malaria associated phenotype can not be restored in FCR3Δvar2csa mutant parasites and highlight the key role of var2CSA in pregnancy malaria pathogenesis and for vaccine development.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The surface variant antigens of Plasmodium falciparum contain cross-reactive epitopes

Benoit Gamain; Louis H. Miller; Dror I. Baruch

Plasmodium falciparum parasites evade the host immune system by clonal expression of the variant antigen, P. falciparum erythrocyte membrane protein 1 (PfEMP1). Antibodies to PfEMP1 correlate with development of clinical immunity but are predominantly variant-specific. To overcome this major limitation for vaccine development, we set out to identify cross-reactive epitopes on the surface of parasitized erythrocytes (PEs). We prepared mAbs to the cysteine-rich interdomain region 1 (CIDR1) of PfEMP1 that is functionally conserved for binding to CD36. Two mAbs, targeting different regions of CIDR1, reacted with multiple P. falciparum strains expressing variant PfEMP1s. One of these mAbs, mAb 6A2-B1, recognized nine of 10 strains tested, failing to react with only one strain that does not bind CD36. Flow cytometry with Chinese hamster ovary cells expressing variant CIDR1s demonstrated that both mAbs recognized the CIDR1 of various CD36-binding PfEMP1s and are truly cross-reactive. The demonstration of cross-reactive epitopes on the PE surface provides further credence for development of effective vaccines against the variant antigen on the surface of P. falciparum-infected erythrocytes.


Malaria Journal | 2008

Var2CSA DBL6-epsilon domain expressed in HEK293 induces limited cross-reactive and blocking antibodies to CSA binding parasites.

Pablo Fernandez; Nicola K. Viebig; Sébastien Dechavanne; Catherine Lépolard; Jürg Gysin; Artur Scherf; Benoit Gamain

BackgroundPregnancy-associated malaria (PAM) is a serious consequence of Plasmodium falciparum-infected erythrocytes sequestration in the placenta through the adhesion to the placental receptor chondroitin sulfate A (CSA). Although women become resistant to PAM as they acquire transcending inhibitory immunity against CSA-binding parasites, hundreds of thousands of lives could be saved if a prophylactic vaccine targeting the surface proteins of placental parasites could be designed. Recent works point to the variant protein var2CSA as the key target for the development of a pregnancy-associated malaria vaccine. However, designing such a prophylactic vaccine has been hindered by the difficulty in identifying regions of var2CSA that could elicit broadly neutralizing and adhesion-blocking antibodies.MethodsVar2CSA is a very large protein with an estimated molecular weight of 350 kDa, and can be divided into six cysteine rich Duffy binding-like domains (DBL). The human embryonic kidney 293 cell line (HEK293) was used to produce secreted soluble recombinant forms of var2CSA DBL domains. The Escherichia coli expression system was also assessed for the domains not expressed or expressed in low amount in the HEK293 system. To investigate whether var2CSA binding DBL domains can induce biologically active antibodies recognizing the native var2CSA and blocking the interaction, mice were immunized with the refolded DBL3-X or the HEK293 secreted DBL6-ε domains.ResultsUsing the HEK293 expression system, DBL1-X, DBL4-ε and DBL6-ε were produced at relatively high levels in the culture supernatant, while DBL3-X and DBL5-ε were produced at much lower levels. DBL2-X and DBL3-X domains were obtained after refolding of the inclusion bodies produced in E. coli. Importantly, mice antisera raised against the recombinant DBL6-ε domain, specifically reacted against the surface of CSA-binding parasites and revealed adhesion blocking activity.ConclusionThis is the first report showing inhibitory binding antibodies obtained through a var2CSA recombinant DBL domain immunization protocol. These results support the current strategies using var2CSA as immunogen in the aim of blocking placental sequestration of malaria parasites. This work is a step towards the development of a var2CSA based vaccine that will prevent pregnancy-associated malaria and improve pregnancy outcomes.


Molecular and Biochemical Parasitology | 1996

Molecular characterization of the glutathione peroxidase gene of the human malaria parasite Plasmodium falciparum

Benoit Gamain; Gordon Langsley; Marie Noëlle Fourmaux; Jean Pierre Touzel; Daniel Camus; Daniel Dive; Christian Slomianny

In this paper we report the isolation and the characterization of a gene encoding the antioxidant enzyme glutathione peroxidase from the human malaria parasite Plasmodium falciparum. This gene contains two introns of 208 and 168 bp and is present in a single copy on chromosome 13. The open reading frame encodes a protein with a predicted length of 205 amino acids, which possesses a potential cleavage site between residues 21 and 22 after a hydrophobic region with the characteristics of a signal sequence. Therefore, the mature protein is predicted to be 184 residues long with a molecular mass of 21404 Da. In comparison with other known glutathione peroxidases many amino acid residues implicated in catalysis are conserved in the malarial enzyme. Phylogenetic analysis indicates that the deduced protein sequence is more closely related to plant glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase. A 1.5-kb transcript was identified in asynchronous erythrocytic stages.


PLOS ONE | 2011

Var2CSA Minimal CSA Binding Region Is Located within the N-Terminal Region

Anand K. Srivastava; Stéphane Gangnard; Sébastien Dechavanne; Farroudja Amirat; Anita Lewit Bentley; Graham A. Bentley; Benoit Gamain

Var2CSA, a key molecule linked with pregnancy-associated malaria (PAM), causes sequestration of Plasmodium falciparum infected erythrocytes (PEs) in the placenta by adhesion to chondroitin sulfate A (CSA). Var2CSA possesses a 300 kDa extracellular region composed of six Duffy-binding like (DBL) domains and a cysteine-rich interdomain region (CIDRpam) module. Although initial studies implicated several individual var2CSA DBL domains as important for adhesion of PEs to CSA, new studies revealed that these individual domains lack both the affinity and specificity displayed by the full-length extracellular region. Indeed, recent evidence suggests the presence of a single CSA-binding site formed by a higher-order domain organization rather than several independent binding sites located on the different domains. Here, we search for the minimal binding region within var2CSA that maintains high affinity and specificity for CSA binding, a characteristic feature of the full-length extracellular region. Accordingly, truncated recombinant var2CSA proteins comprising different domain combinations were expressed and their binding characteristics assessed against different sulfated glycosaminoglycans (GAGs). Our results indicate that the smallest region within var2CSA with similar binding properties to those of the full-length var2CSA is DBL1X-3X. We also demonstrate that inhibitory antibodies raised in rabbit against the full-length DBL1X-6ε target principally DBL3X and, to a lesser extent, DBL5ε. Taken together, our results indicate that efforts should focus on the DBL1X-3X region for developing vaccine and therapeutic strategies aimed at combating PAM.

Collaboration


Dive into the Benoit Gamain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis H. Miller

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Deloron

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Dror I. Baruch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge