Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benoit Garitte is active.

Publication


Featured researches published by Benoit Garitte.


Rock Mechanics and Rock Engineering | 2014

Thermal Conductivity of Argillaceous Rocks: Determination Methodology Using In Situ Heating Tests

Benoit Garitte; A. Gens; Jean Vaunat; Gilles Armand

This study focuses on the characterisation of thermal conductivity for three potential host rocks for radioactive waste disposal. First, the heat conduction process is reviewed on the basis of an analytical solution and key aspects related to anisotropic conduction are discussed. Then the existing information on the three rocks is summarised and a broad uncertainty range of thermal conductivity is estimated based on the mineralogical composition. Procedures to backanalyse the thermal conductivity on the basis of in situ heating tests are assessed and a methodology is put forward. Finally, this methodology is used to estimate the impact of experimental uncertainties and applied to the four in situ heating tests. In the three potential host rocks, a clear influence of the bedding planes was identified and anisotropic heat conduction was shown to be necessary to interpret the observed temperature field. Experimental uncertainties were also shown to induce a larger uncertainty on the anisotropy ratio than on the equivalent thermal conductivity defined as the geometric mean of the thermal conductivity in the three principal directions.


Swiss Journal of Geosciences | 2017

Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory

Herwig Müller; Benoit Garitte; Tobias Vogt; Sven Köhler; Toshihiro Sakaki; Hanspeter Weber; Thomas Spillmann; Marian Hertrich; Jens K. Becker; Niels Giroud; V. Cloet; Nikitas Diomidis; Tim Vietor

Opalinus Clay is currently being assessed as the host rock for a deep geological repository for high-level and low- and intermediate-level radioactive wastes in Switzerland. Within this framework, the ‘Full-Scale Emplacement’ (FE) experiment was initiated at the Mont Terri rock laboratory close to the small town of St-Ursanne in Switzerland. The FE experiment simulates, as realistically as possible, the construction, waste emplacement, backfilling and early post-closure evolution of a spent fuel/vitrified high-level waste disposal tunnel according to the Swiss repository concept. The main aim of this multiple heater test is the investigation of repository-induced thermo-hydro-mechanical (THM) coupled effects on the host rock at this scale and the validation of existing coupled THM models. For this, several hundred sensors were installed in the rock, the tunnel lining, the bentonite buffer, the heaters and the plug. This paper is structured according to the implementation timeline of the FE experiment. It documents relevant details about the instrumentation, the tunnel construction, the production of the bentonite blocks and the highly compacted ‘granulated bentonite mixture’ (GBM), the development and construction of the prototype ‘backfilling machine’ (BFM) and its testing for horizontal GBM emplacement. Finally, the plug construction and the start of all 3 heaters (with a thermal output of 1350 Watt each) in February 2015 are briefly described. In this paper, measurement results representative of the different experimental steps are also presented. Tunnel construction aspects are discussed on the basis of tunnel wall displacements, permeability testing and relative humidity measurements around the tunnel. GBM densities achieved with the BFM in the different off-site mock-up tests and, finally, in the FE tunnel are presented. Finally, in situ thermal conductivity and temperature measurements recorded during the first heating months are presented.


Geological Society, London, Special Publications | 2014

EBS behaviour immediately after repository closure in a clay host rock: HE-E experiment (Mont Terri URL)

I. Gaus; K. Wieczorek; K. Schuster; Benoit Garitte; R. Senger; R. Vasconcelos; J. C. Mayor

Abstract The evolution of the clay-based engineered barrier system (EBS) of geological repositories for radioactive waste has been the subject of many research programmes during the last decade. The early post-closure thermal behaviour is elucidated by the HE-E experiment, a 1:2 scale heating experiment (at the Mont Terri Rock Laboratory), which was implemented in the first semester of 2011, with the initiation of the heating phase in June 2011. A maximum temperature of 140 °C was reached in June 2012. After 15 months of heating, the temperature evolution in the EBS and the Opalinus Clay reflects the design calculations, and thermally induced porewater overpressures are being measured at a few metres’ distance in the Opalinus Clay. Seismic methods proved to be a sensitive tool for the continuous characterization of changes of EBS and Opalinus Clay properties. Design modelling and predictive modelling based on the as-built parameter dataset with established coupled codes (TOUGH, CODE_BRIGHT; using various geometries) are described. The results indicate that the models are generally in agreement with the observations and capable of capturing the evolution of the experiment.


Swiss Journal of Geosciences | 2017

Performance of the Opalinus Clay under thermal loading: experimental results from Mont Terri rock laboratory (Switzerland)

A. Gens; Klaus Wieczorek; Irina Gaus; Benoit Garitte; Juan Carlos Mayor; Kristof Schuster; Gilles Armand; José Luis García-Siñeriz; Thomas Trick

The paper presents an overview of the behaviour of Opalinus Clay under thermal loading as observed in three in situ heating tests performed in the Mont Terri rock laboratory: HE-B, HE-D and HE-E. The three tests are summarily described; they encompass a broad range of test layouts and experimental conditions. Afterwards, the following topics are examined: determination of thermal conductivity, thermally-induced pore pressure generation and thermally-induced mechanical effects. The mechanisms underlying pore pressure generation and dissipation are discussed in detail and the relationship between rock damage and thermal loading is examined using an additional in situ test: SE-H. The paper concludes with an evaluation of the various thermo-hydro-mechanical (THM) interactions identified in the heating tests.


Geological Society, London, Special Publications | 2017

The influence of different supports on the properties of the excavation damaged zone along the FE tunnel in the Mont Terri Underground Rock Laboratory

Hua Shao; Benjamin Paul; Xuerui Wang; Jürgen Hesser; Jens K. Becker; Benoit Garitte; Herwig Müller

Abstract Permeability and its spatial distribution around an underground opening in a geological formation are important for the interpretation of thermal, hydraulic and mechanical findings from an in situ demonstration experiment. Within the site characterization programme of the Full-scale Emplacement (FE) experiment, permeability measurements with nitrogen gas have been conducted from six short boreholes. Four of them were located in a section without shotcrete support and two in a section with a three-layer-shotcrete lining. As expected, the extension of the zone with an increased permeability was larger (up to 2 m) in the area without shotcrete support than that in the section with a shotcrete lining (less than 1.5 m). The water content in the sections with or without shotcrete linings also showed different behaviour over long-term monitoring. The water content in the deep borehole section in the area with a shotcrete lining stayed almost constant, while the water content in the deep borehole section in the area without shotcrete tended to continuously decrease. In general, the water content close to the tunnel is influenced by the seasonal change in the temperature and relative humidity within the tunnel, especially in the section without a shotcrete lining. Analysis of the abovementioned observations/findings was done by performing FEM (finite-element method) calculations with OpenGeoSys (OGS) software using a coupled hydromechanical model. Owing to the high stiffness of shotcrete, the displacement in the section with a shotcrete lining was smaller. This, in turn, results in a smaller extension in the excavation damaged zone (EDZ). However, shotcrete has a relatively high suction capacity and high initial water content: thus, the interface between the shotcrete and the Opalinus Clay becomes more saturated. Therefore, the excavation-induced fractures in the Opalinus Clay close to the shotcrete can be sealed by swelling. The water content decreases continuously, as a result of desaturation occurring during the operational phase and the associated change in porewater pressure.


ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B | 2011

EBS Behaviour Immediately After Repository Closure in a Clay Host Rock: The HE-E Experiment (Mont Terri URL)

Irina Gaus; Klaus Wieczorek; Juan Carlos Mayor; Thomas Trick; José-Luis Garcià Siñeriz; Kristof Schuster; Benoit Garitte; Uli Kuhlman

The evolution of the engineered barrier system (EBS) of geological repositories for radioactive waste has been the subject of many research programmes during the last decade. The emphasis of the research activities was on the elaboration of a detailed understanding of the complex thermo-hydro-mechanical-chemical processes, which are expected to evolve in the early post closure period in the near field. It is important to understand the coupled THM-C processes and their evolution occurring in the EBS during the early post-closure phase so it can be confirmed that the safety functions will be fulfilled. Especially, it needs to be ensured that interactions during the resaturation phase (heat pulse, gas generation, non-uniform water uptake from the host rock) do not affect the performance of the EBS in terms of its safety-relevant parameters (e.g. swelling pressure, hydraulic conductivity, diffusivity). The 7th Framework PEBS project (Long Term Performance of Engineered Barrier Systems) aims at providing in depth process understanding for constraining the conceptual and parametric uncertainties in the context of long-term safety assessment. As part of the PEBS project a series of laboratory and URL experiments are envisaged to describe the EBS behaviour after repository closure when resaturation is taking place. In this paper the very early post-closure period is targeted when the EBS is subjected to high temperatures and unsaturated conditions with a low but increasing moisture content. So far the detailed thermo-hydraulic behaviour of a bentonite EBS in a clay host rock has not been evaluated at a large scale in response to temperatures of up to 140°C at the canister surface, produced by HLW (and spent fuel), as anticipated in some of the designs considered. Furthermore, earlier THM experiments have shown that upscaling of thermal conductivity and its dependency on water content and/or humidity from the laboratory scale to a field scale needs further attention. This early post-closure thermal behaviour will be elucidated by the HE-E experiment, a 1:2 scale heating experiment setup at the Mont Terri rock laboratory, that started in June 2011. It will characterise in detail the thermal conductivity at a large scale in both pure bentonite as well as a bentonite-sand mixture, and in the Opalinus Clay host rock. The HE-E experiment is especially designed as a model validation experiment at the large scale and a modelling programme was launched in parallel to the different experimental steps. Scoping calculations were run to help the experimental design and prediction exercises taking the final design into account are foreseen. Calibration and prediction/validation will follow making use of the obtained THM dataset. This benchmarking of THM process models and codes should enhance confidence in the predictive capability of the recently developed numerical tools. It is the ultimate aim to be able to extrapolate the key parameters that might influence the fulfilment of the safety functions defined for the long term steady state.Copyright


European Journal of Environmental and Civil Engineering | 2009

Applications of multiphysical geomechanics in underground nuclear waste storage

A. Gens; Benoit Garitte; S. Olivella; Jean Vaunat

ABSTRACT Deep geological disposal in suitable host rocks is the favoured strategy for the storage and disposal of heat-emitting high level nuclear waste. A rational design of repositories requires a good understanding of the interacting thermo-hydro-mechanical phenomena that occur in the engineered barrier and adjacent rock. To this end, a multiphysical formulation is described that allows the performance of coupled THM analyses capable of reproducing observed phenomena. The formulation and computer code is applied to the simulation of two large scale tests: a mine-by test involving the excavation of a shaft in an argillaceous rock and a large-scale high- temperature heating test in fractured rock.


Geotechnical Engineering for Infrastructure and Development: proceedings of the XVI European Conference on Soil Mechanics and Geotechnical Engineering | 2015

Observation of ventilation effects around a tunnel excavated in argillaceous materials

Antonio Gens Solé; Benoit Garitte

The nature-inspired concept of self-healing materials in construction is relatively new and has recently attracted significant attention as this could bring about substantial savings in maintenance costs as well as enhance the durability and serviceability and improve the safety of our structures and infrastructure. Much of the research and applications to date has focused on concrete, for structural applications, and on asphalt, with significant advances being made. However, to date no attention has been given to the incorporation of self-healing concepts in geotechnical and geo-environmental applications. This includes the use of concrete and other stabilising agents in foundations and other geotechnical structures, grouts, grouted soil systems, soil-cement systems and slurry walls for ground improvement and land remediation applications. The recently established Materials for Life (M4L) project funded by EPSRC has initiated research activities in the UK focussing on those applications. The project involves the development and integration of the use of microcapsules, biological agents, shape memory polymers and vascular networks as healing systems. The authors are exploring development of self-healing systems using mineral admixtures, microencapsulation and bio-cementation applications. The paper presents an overview of those initiatives to date and potential applications and presents some relevant preliminary results.By contrast to studies in petroleum geology and, despite their world-wide occurrence, geotechnical studies of ancient fluvial sediments are rare. This paper introduces the main characteristics of these sediments by reference to a classic UK example. Attention is then drawn to a number of major overseas examples where, although the principal features can be recognised, large differences arise as a result of factors such as the tectonic setting, the volume and mineralogy of the source material and the climate at the time the sediments were deposited. The first, over-riding problem for their engineering evaluation comes during the site investigation phase with the difficulty of deducing the geological structure and distribution of the widely varying lithologies.Strain accumulation in granular soils due to dynamic loading is investigated through long term cyclic triaxial tests and cyclic triaxial tests according to ASTM D 3999-91. Soil parameters, test equipment and loading conditions have a significant influence on strain accumulation, therefore a parameterization of the silica sand and a description of the cyclic triaxial test device are explained. Cyclic triaxial tests are performed and test results are presented illustrating the evolution of Young’s modulus during long term cyclic loading. The influence of the width of the stress-strain loop and the initial void ratio on strain accumulation is investigated and validated with existing accumulation models. The usefulness of Miner’s rule on sand subjected to cyclic loading is demonstrated by two tests with different packages of loading cycles.


Archive | 2013

Excavation Damage Zone at High Depths: Field Cases and Coupled Analysis

Jean Vaunat; A. Gens; Benoit Garitte

One of the challenges of the modelling of hard soils and soft rocks is the precise reproduction of the Excavation Damage Zone (EDZ) around openings. Characteristics of the EDZ are indeed affected by both fissuration and fracturation, which requires the consideration of a mechanical model based on coupled damage-plasticity. In this abstract, the performance of a composite model developed by Vaunat & Gens [1] for such a purpose is tested by comparison with a large-scale field tests carried out in the Underground Research Laboratory of Meuse/Haute Marne (Callovo-Oxfordian formation, see Armand et al. [2]; Su [3]).


Geotechnique | 2007

In situ behaviour of a stiff layered clay subject to thermal loading: Observations and interpretation

A. Gens; Jean Vaunat; Benoit Garitte; Y. Wileveau

Collaboration


Dive into the Benoit Garitte's collaboration.

Top Co-Authors

Avatar

Jean Vaunat

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Antonio Gens Solé

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

A. Gens

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bertrand François

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Chambon

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar

Y. Sieffert

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge