Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benoit Guieysse is active.

Publication


Featured researches published by Benoit Guieysse.


Environment International | 2008

Nonylphenol in the environment : A critical review on occurrence, fate, toxicity and treatment in wastewaters

Ana Soares; Benoit Guieysse; Bruce Jefferson; Elise Cartmell; J.N. Lester

Nonylphenol is a toxic xenobiotic compound classified as an endocrine disrupter capable of interfering with the hormonal system of numerous organisms. It originates principally from the degradation of nonylphenol ethoxylates which are widely used as industrial surfactants. Nonylphenol ethoxylates reach sewage treatment works in substantial quantities where they biodegrade into several by-products including nonylphenol. Due to its physical-chemical characteristics, such as low solubility and high hydrophobicity, nonylphenol accumulates in environmental compartments that are characterised by high organic content, typically sewage sludge and river sediments, where it persists. The occurrence of nonylphenol in the environment is clearly correlated with anthropogenic activities such as wastewater treatment, landfilling and sewage sludge recycling. Nonylphenol is found often in matrices such as sewage sludge, effluents from sewage treatment works, river water and sediments, soil and groundwater. The impacts of nonylphenol in the environment include feminization of aquatic organisms, decrease in male fertility and the survival of juveniles at concentrations as low as 8.2 microg/l. Due to the harmful effects of the degradation products of nonylphenol ethoxylates in the environment, the use and production of such compounds have been banned in EU countries and strictly monitored in many other countries such as Canada and Japan. Although it has been shown that the concentration of nonylphenol in the environment is decreasing, it is still found at concentrations of 4.1 microg/l in river waters and 1 mg/kg in sediments. Nonylphenol has been referred to in the list of priority substances in the Water Frame Directive and in the 3rd draft Working Document on Sludge of the EU. Consequently there is currently a concern within some industries about the possibility of future regulations that may impose the removal of trace contaminants from contaminated effluents. The significance of upgrading sewage treatment works with advanced treatment technologies for removal of trace contaminants is discussed.


Biotechnology Advances | 2008

Biological treatment of indoor air for VOC removal: potential and challenges.

Benoit Guieysse; Cécile Hort; Vincent Platel; Raúl Muñoz; Michel Ondarts; Sergio Revah

There is nowadays no single fully satisfactory method for VOC removal from indoor air due to the difficulties linked to the very low concentration (microg m(-3) range), diversity, and variability at which VOCs are typically found in the indoor environment. Although biological methods have shown a certain potential for this purpose, the specific characteristic of indoor air and the indoor air environment brings numerous challenges. In particular, new methods must be developed to inoculate, express, and maintain a suitable and diverse catabolic ability under conditions of trace substrate concentration which might not sustain microbial growth. In addition, the biological treatment of indoor air must be able to purify large amounts of air in confined environments with minimal nuisances and release of microorganisms. This requires technical innovations, the development of specific testing protocols and a deep understanding of microbial activities and the mechanisms of substrate uptake at trace concentrations.


Bioresource Technology | 2013

Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions

Benoit Guieysse; Quentin Béchet; Andy Shilton

Using case studies from five typical climatic locations, this study revealed that current quantification of water demand (WD) and water footprint (WF) of freshwater algae cultivation in raceway ponds suffer from uncertainty and variability in the methodologies and assumptions used. Of particular concern, the WF metric had an intrinsically poor geographical resolution and could be biased towards high-productivity arid locations because local levels of water stress are not accounted for. Applying current methodologies could therefore cause the selection of locations that are neither economically viable nor environmentally sustainable. An improved methodology should utilize more accurate evaporation models, determine realistic limits for the maximum hydraulic retention times and process water recycling ratios, and apply weighting to the WF to reflect localized water stress or use an alternative metric such as the equivalent years of rainfall required to support a productivity of 1G J m(-2).


Journal of Hazardous Materials | 2012

Tetracycline removal during wastewater treatment in high-rate algal ponds

Ignacio de Godos; Raúl Muñoz; Benoit Guieysse

With the hypothesis that light supply can impact the removal of veterinary antibiotics during livestock wastewater treatment in high rate algal ponds (HRAPs), this study was undertaken to determine the mechanisms of tetracycline removal in these systems. For this purpose, two HRAPs were fed with synthetic wastewater for 46 days before tetracycline was added at 2 mg L(-1) to the influent of one of the reactors (Te-HRAP). From day 62, dissolved tetracycline removal stabilized around 69 ± 1% in the Te-HRAP and evidence from batch assays suggests that this removal was mainly caused by photodegradation and biosorption. Tetracycline addition was followed by the deflocculation of the Te-HRAP biomass but had otherwise no apparent impact on the removal of the chemical oxygen demand (COD) and biomass productivity. The results from the batch assays also suggested that the light-shading and/or pollutant-sequestrating effects of the biomass limited tetracycline removal in the pond. For the first time, these results demonstrate that the shallow geometry of HRAPs is advantageous to support the photodegradation of antibiotics during wastewater biological treatment but that the presence of these pollutants could hamper biomass recovery. These findings have significant implications for algal-based environmental biotechnologies and must be confirmed under field conditions.


Journal of Hazardous Materials | 2009

Biofilm photobioreactors for the treatment of industrial wastewaters

Raúl Muñoz; Claudia Köllner; Benoit Guieysse

A flat plate and a tubular packed-bed photobioreactor with an algal-bacterial biofilm attached onto Poraver beads carriers, a flat plate and a tubular photobioreactor with the biofilm attached onto the reactor walls, and an algal-turf reactor were compared in terms of BOD removal efficiencies, elimination capacities, and stability. A control column photobioreactor with suspended algal-bacterial biomass was also tested to compare the performance of biofilm photobioreactors with conventional algal-based processes. When the algal-bacterial biomass was immobilized onto Poraver the process never reached a steady state due to a poor homogenization in the bioreactor. When the biofilm was formed onto the reactor wall (or reactor base) the process was stable. A maximum degradation rate of 295mg BODl(-1)h(-1) was achieved in the algal-turf reactor although control experiments performed in the dark showed atmospheric O2 diffusion represented 55% of the oxygenation capacity in this system. BOD removal rates of 108, and 92mg BODl(-1)h(-1) were achieved in the tubular and flat plate biofilm reactors, respectively, compared to 77mg BODl(-1)h(-1) in the control suspended bioreactor. In addition, all biofilm photobioreactors produced an easily settleable biomass. Evidence was found that biomass attachment to the reactors wall improved stability.


Environmental Science & Technology | 2010

Mechanistic Modeling of Broth Temperature in Outdoor Photobioreactors

Quentin Béchet; Andy Shilton; Oliver B. Fringer; Raúl Muñoz; Benoit Guieysse

This study presents the first mechanistic model describing broth temperature in column photobioreactors as a function of static (location, reactor geometry) and dynamic (light irradiance, air temperature, wind velocity) parameters. Based on a heat balance on the liquid phase the model predicted temperature in a pneumatically agitated column photobioreactor (1 m(2) illuminated area, 0.19 m internal diameter, 50 L gas-free cultivation broth) operated outdoor in Singapore to an accuracy of 2.4 °C at the 95% confidence interval over the entire data set used (104 measurements from 7 different batches). Solar radiation (0 to 200 W) and air convection (-30 to 50 W)were the main contributors to broth temperature change. The model predicted broth temperature above 40 °C will be reached during summer months in the same photobioreactor operated in California, a value well over the maximum temperature tolerated by most commercial algae species. Accordingly, 18,000 and 5500 GJ year(-1) ha(-1) of heat energy must be removed to maintain broth temperature at or below 25 and 35 °C, respectively, assuming a reactor density of one reactor per square meter. Clearly, the significant issue of temperature control must be addressed when evaluating the technical feasibility, costs, and sustainability of large-scale algae production.


Environmental Science & Technology | 2011

Universal temperature model for shallow algal ponds provides improved accuracy.

Quentin Béchet; Andy Shilton; J.B.K. Park; Rupert J. Craggs; Benoit Guieysse

While temperature is fundamental to the design and optimal operation of shallow algal ponds, there is currently no temperature model universally applicable to these systems. This paper presents a model valid for any opaque water body of uniform temperature profile. This new universal model was tested against 1 year of experimental data collected from a wastewater treatment high rate algal pond. On the basis of 1 year of data collected every 15 min, the average errors of the predicted afternoon peak and predawn minimum were both only 1.3 °C and the average error between these extremes was just 1.2 °C. In order to demonstrate the improvement in accuracy gained, the expressions for heat fluxes used in nine prior temperature models were systematically substituted into the new universal model and evaluated against the experimental data. Errors in the peak and minimum temperatures increased by up to 2.1 and 3.2 °C, respectively, while the error between these extremes increased by up to 2.9 °C. In practical applications, these levels of inaccuracies could lead to an under/overestimation of the algal productivity and the evaporative water loss by approximately 40% and 300%, respectively.


Current Opinion in Biotechnology | 2012

Plant based phosphorus recovery from wastewater via algae and macrophytes.

Andy Shilton; N. Powell; Benoit Guieysse

At present, resource recovery by irrigation of wastewater to plants is usually driven by the value of the water resource rather than phosphorus recovery. Expanded irrigation for increased phosphorus recovery may be expected as the scarcity and price of phosphorus increases, but providing the necessary treatment, storage and conveyance comes at significant expense. An alternative to taking the wastewater to the plants is instead to take the plants to the wastewater. Algal ponds and macrophyte wetlands are already in widespread use for wastewater treatment and if harvested, would require less than one-tenth of the area to recover phosphorus compared to terrestrial crops/pastures. This area could be further decreased if the phosphorus content of the macrophytes and algae biomass was tripled from 1% to 3% via luxury uptake. While this and many other opportunities for plant based recovery of phosphorus exist, e.g. offshore cultivation, much of this technology development is still in its infancy. Research that enhances our understanding of how to maximise phosphorus uptake and harvest yields; and further add value to the biomass for reuse would see the recovery of phosphorus via plants become an important solution in the future.


Journal of Hazardous Materials | 2014

Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment.

Benoit Guieysse; Zane N. Norvill

When direct wastewater biological treatment is unfeasible, a cost- and resource-efficient alternative to direct chemical treatment consists of combining biological treatment with a chemical pre-treatment aiming to convert the hazardous pollutants into more biodegradable compounds. Whereas the principles and advantages of sequential treatment have been demonstrated for a broad range of pollutants and process configurations, recent progresses (2011-present) in the field provide the basis for refining assessment of feasibility, costs, and environmental impacts. This paper thus reviews recent real wastewater demonstrations at pilot and full scale as well as new process configurations. It also discusses new insights on the potential impacts of microbial community dynamics on process feasibility, design and operation. Finally, it sheds light on a critical issue that has not yet been properly addressed in the field: integration requires complex and tailored optimization and, of paramount importance to full-scale application, is sensitive to uncertainty and variability in the inputs used for process design and operation. Future research is therefore critically needed to improve process control and better assess the real potential of sequential chemical-biological processes for industrial wastewater treatment.


Journal of Hazardous Materials | 2010

Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1.

Tamer M. Essam; Magdy A. Amin; Ossama El Tayeb; Bo Mattiasson; Benoit Guieysse

A bacterium that could completely metabolize phenol in batch culture supplied with up to 1200 mg phenol l(-1) at room temperature (25 degrees C) was isolated from the activated sludge of the industrial wastewater treatment plant of a Coke company (Cairo, Egypt). Morphological and physiological characterization showed strain TW1 was a motile, strictly aerobic, gram negative and short-rod occurring singly or in clusters. Partial 16S rRNA gene sequence analysis revealed strain TW1 belonged to the beta group of Proteobacteria, showing 100% identity to Alcaligenes SCTI. Strain TW1 aerobically grew on a number of monocyclic aromatic compounds (hydroquinone, catechol and o-cresol) as well as polycyclic aromatic compounds (pyrene, phenanthrene and naphthalene). The growth of Alcaligenes TW1 on phenol as sole carbon and energy source (25 degrees C) was well described by the Haldane kinetics model with a maximal specific growth rate of 0.58 h(-1), a half-saturation constant of 10 mg l(-1), and a substrate inhibition constant of 152-550 mg l(-1). The biomass yield coefficient ranged from 0.55 to 0.64 mg dry cell mass/mg phenol. Due to its high tolerance to phenol and high metabolic versatility, Alcaligenes sp. TW1 is considered an excellent candidate for the biotreatment of high strength phenol-laden industrial wastewaters.

Collaboration


Dive into the Benoit Guieysse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raúl Muñoz

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paqui Blánquez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge