Benoit Mouzon
Roskamp Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benoit Mouzon.
Annals of Neurology | 2014
Benoit Mouzon; Corbin Bachmeier; Austin Ferro; Joseph-Olubunmi Ojo; Gogce Crynen; Christopher M. Acker; Peter Davies; Michael Mullan; William Stewart; Fiona Crawford
Traumatic brain injury (TBI) is a recognized risk factor for later development of neurodegenerative disease. However, the mechanisms contributing to neurodegeneration following TBI remain obscure.
Journal of Neurotrauma | 2012
Benoit Mouzon; Helena Chaytow; Gogce Crynen; Corbin Bachmeier; Janice Stewart; Michael Mullan; William Stewart; Fiona Crawford
Concussion or mild traumatic brain injury (mTBI) represents the most common type of brain injury. However, in contrast with moderate or severe injury, there are currently few non-invasive experimental studies that investigate the cumulative effects of repetitive mTBI using rodent models. Here we describe and compare the behavioral and pathological consequences in a mouse model of single (s-mTBI) or repetitive injury (r-mTBI, five injuries given at 48 h intervals) administered by an electromagnetic controlled impactor. Our results reveal that a single mTBI is associated with transient motor and cognitive deficits as demonstrated by rotarod and the Barnes Maze respectively, whereas r-mTBI results in more significant deficits in both paradigms. Histology revealed no overt cell loss in the hippocampus, although a reactive gliosis did emerge in hippocampal sector CA1 and in the deeper cortical layers beneath the injury site in repetitively injured animals, where evidence of focal injury also was observed in the brainstem and cerebellum. Axonal injury, manifest as amyloid precursor protein immunoreactive axonal profiles, was present in the corpus callosum of both injury groups, though more evident in the r-mTBI animals. Our data demonstrate that this mouse model of mTBI is reproducible, simple, and noninvasive, with behavioral impairment after a single injury and increasing deficits after multiple injuries accompanied by increased focal and diffuse pathology. As such, this model may serve as a suitable platform with which to explore repetitive mTBI relevant to human brain injury.
Journal of Neuropathology and Experimental Neurology | 2013
Joseph-Olubunmi Ojo; Benoit Mouzon; M. Banks Greenberg; Corbin Bachmeier; Mike Mullan; Fiona Crawford
Extensive tau-immunoreactive neurons and glial cells associated with chronic traumatic encephalopathy (CTE) have been documented in the brains of some professional athletes and others with a history of repetitive mild traumatic brain injury (r-mTBI). The neuropathology and tau involvement in mTBI have not been extensively studied in animal models, particularly in aged animals. We investigated the effects of single mTBI (s-mTBI) and r-mTBI in 18-month-old hTau mice, which express wild-type human tau isoforms on a null murine tau background (n = 3-5 per group). At this age, hTau mice already demonstrate tau pathology, but there was a significant increase in phospho-tau immunoreactivity in response to r-mTBI, but not to s-mTBI,as determined using multiple phospho-tau-specific antibodies. Repetitive mTBI also resulted in a marked increase in astrocyte/microglia activation notably in the superficial layer of the motor/somatosensory cortex and the corpus callosum. We did not observe the perivascular tau pathology, neuritic threads, or astrocytic tangles that are commonly found in human CTE. The increase in phospho-tau in the r-mTBI mice suggests that this may be a useful model for investigating further the link between mTBI, particularly r-mTBI, and tau pathobiology in CTE and in understanding responses of the aged brain to mTBI.
Experimental Neurology | 2016
Joseph Ojo; Benoit Mouzon; Fiona Crawford
Chronic traumatic encephalopathy (CTE) is a neurological and psychiatric condition marked by preferential perivascular foci of neurofibrillary and glial tangles (composed of hyperphosphorylated-tau proteins) in the depths of the sulci. Recent retrospective case series published over the last decade on athletes and military personnel have added considerably to our clinical and histopathological knowledge of CTE. This has marked a vital turning point in the traumatic brain injury (TBI) field, raising public awareness of the potential long-term effects of mild and moderate repetitive TBI, which has been recognized as one of the major risk factors associated with CTE. Although these human studies have been informative, their retrospective design carries certain inherent limitations that should be cautiously interpreted. In particular, the current overriding issue in the CTE literature remains confusing in regard to appropriate definitions of terminology, variability in individual pathologies and the potential case selection bias in autopsy based studies. There are currently no epidemiological or prospective studies on CTE. Controlled preclinical studies in animals therefore provide an alternative means for specifically interrogating aspects of CTE pathogenesis. In this article, we review the current literature and discuss difficulties and challenges of developing in-vivo TBI experimental paradigms to explore the link between repetitive head trauma and tau-dependent changes. We provide our current opinion list of recommended features to consider for successfully modeling CTE in animals to better understand the pathobiology and develop therapeutics and diagnostics, and critical factors, which might influence outcome. We finally discuss the possible directions of future experimental research in the repetitive TBI/CTE field.
Neuroscience | 2009
Fiona Crawford; Marcie Wood; Scott Ferguson; Venkatarajan S. Mathura; P. Gupta; J. Humphrey; Benoit Mouzon; V. Laporte; E. Margenthaler; B. O'Steen; Ronald L. Hayes; A. Roses; Myles Mullan
The different alleles of the apolipoprotein E gene (APOE-gene, ApoE-protein) have been reported to influence recovery after traumatic brain injury (TBI) in both human patients and animal models, with the e4 allele typically conferring poorer prognosis for recovery. How the E4 allele, and consequently the ApoE4 isoform, affects recovery is unknown, but proposed mechanisms include neurogenesis, inflammatory response and amyloid processing or metabolism. Using the controlled cortical impact (CCI) model of brain injury and microarray technology we have characterized the genomic response to injury in the brains of APOE2, APOE3 and APOE4 transgenic mice and identified quantitatively and qualitatively significantly different profiles of gene expression in both the hippocampus and the cortex of the APOE3 mice compared to APOE4. The observed gene regulation predicts functional consequences including effects on inflammatory processes, cell growth and proliferation, and cellular signaling, and may suggest that the poor recovery post-TBI in APOE4 animals and human patients is less likely to result from a specific activation of neurodegenerative mechanisms than a loss of reparative capability.
The FASEB Journal | 2014
Laila Abdullah; James E. Evans; Scott Ferguson; Benoit Mouzon; Hannah Montague; Jon Reed; Gogce Crynen; Tanja Emmerich; Madison Crocker; Robert Pelot; Michael Mullan; Fiona Crawford
Phospholipid (PL) abnormalities are observed in the cerebrospinal fluid of patients with traumatic brain injury (TBI), suggesting their role in TBI pathology. Therefore, PL levels were examined in a TBI mouse model that received 1.8 mm deep controlled cortical impact injury or craniectomy only (control). The rotarod and Barnes maze acquisition and probe tests were performed within 2 wk after injury, with another probe test performed 3 mo postinjury. Liquid chromatography/mass spectrometry analyses were performed on lipid extracts from several brain regions and plasma from injured and control mice collected at 3 mo postinjury. Compared to controls, injured mice with sensorimotor and learning deficits had decreased levels of cortical and cerebellar phosphatidylcholine (PC) and phosphatidylethanolamine (PE) levels, while hippocampal PC, sphingomyelin and PE levels were elevated. Ether PE levels were lower in the cortices and plasma of injured animals. Polyunsaturated fatty acid‐containing PC and PE species, particularly ratios of docosahexaenoic acid (DHA) to arachidonic acid, were lower in the hippocampi and cortices and plasma of injured mice. Given the importance of DHA in maintaining neuronal function and resolving inflammation and of peroxisomes in synthesis of ether PLs, normalizing these PLs may be a useful strategy for treating the chronic pathology of TBI.—Abdullah, L., Evans, J. E., Ferguson, S., Mouzon, B., Montague, H., Reed, J., Crynen, G., Emmerich, T., Crocker, M., Pelot, R., Mullan, M., Crawford, F., Lipidomic analyses identify injury‐specific phospholipid changes 3 months after traumatic brain injury. FASEB J. 28, 5311–5321 (2014). www.fasebj.org
Journal of Neuropathology and Experimental Neurology | 2014
Radouil Tzekov; Alexandra Quezada; Megan Gautier; Davida Biggins; Candice Frances; Benoit Mouzon; Jeff Jamison; Michael Mullan; Fiona Crawford
There is increasing evidence that long-lasting morphologic and functional consequences can be present in the human visual system after repetitive mild traumatic brain injury (r-mTBI). The exact location and extent of the damage in this condition are not well understood. Using a recently developed mouse model of r-mTBI, we assessed the effects on the retina and optic nerve using histology and immunohistochemistry, electroretinography (ERG), and spectral-domain optical coherence tomography (SD-OCT) at 10 and 13 weeks after injury. Control mice received repetitive anesthesia alone (r-sham). We observed decreased optic nerve diameters and increased cellularity and areas of demyelination in optic nerves in r-mTBI versus r-sham mice. There were concomitant areas of decreased cellularity in the retinal ganglion cell layer and approximately 67% decrease in brain-specific homeobox/POU domain protein 3A-positive retinal ganglion cells in retinal flat mounts. Furthermore, SD-OCT demonstrated a detectable thinning of the inner retina; ERG demonstrated a decrease in the amplitude of the photopic negative response without any change in a- or b-wave amplitude or timing. Thus, the ERG and SD-OCT data correlated well with changes detected by morphometric, histologic, and immunohistochemical methods, thereby supporting the use of these noninvasive methods in the assessment of visual function and morphology in clinical cases of mTBI.
International Journal of Geriatric Psychiatry | 2011
Sean Kennelly; Laila Abdullah; Rose Anne Kenny; Venkat Mathura; Cheryl A. Luis; Benoit Mouzon; Fiona Crawford; Michael Mullan; Brian A. Lawlor
Evidence suggests that dihydropyridine calcium channel blockers may be useful in preventing and treating Alzheimers disease (AD).
Frontiers in Behavioral Neuroscience | 2014
Joseph Ojo; M. Banks Greenberg; Paige Leary; Benoit Mouzon; Corbin Bachmeier; Michael Mullan; David M. Diamond; Fiona Crawford
Co-morbid mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) has become the signature disorder for returning combat veterans. The clinical heterogeneity and overlapping symptomatology of mTBI and PTSD underscore the need to develop a preclinical model that will enable the characterization of unique and overlapping features and allow discrimination between both disorders. This study details the development and implementation of a novel experimental paradigm for PTSD and combined PTSD-mTBI. The PTSD paradigm involved exposure to a danger-related predator odor under repeated restraint over a 21 day period and a physical trauma (inescapable footshock). We administered this paradigm alone, or in combination with a previously established mTBI model. We report outcomes of behavioral, pathological and biochemical profiles at an acute timepoint. PTSD animals demonstrated recall of traumatic memories, anxiety and an impaired social behavior. In both mTBI and combination groups there was a pattern of disinhibitory like behavior. mTBI abrogated both contextual fear and impairments in social behavior seen in PTSD animals. No major impairment in spatial memory was observed in any group. Examination of neuroendocrine and neuroimmune responses in plasma revealed a trend toward increase in corticosterone in PTSD and combination groups, and an apparent increase in Th1 and Th17 proinflammatory cytokine(s) in the PTSD only and mTBI only groups respectively. In the brain there were no gross neuropathological changes in any groups. We observed that mTBI on a background of repeated trauma exposure resulted in an augmentation of axonal injury and inflammatory markers, neurofilament L and ICAM-1 respectively. Our observations thus far suggest that this novel stress-trauma-related paradigm may be a useful model for investigating further the overlapping and distinct spatio-temporal and behavioral/biochemical relationship between mTBI and PTSD experienced by combat veterans.
Journal of Neuropathology and Experimental Neurology | 2016
Joseph Ojo; Benoit Mouzon; Moustafa Algamal; Paige Leary; Cillian Lynch; Laila Abdullah; James E. Evans; Michael Mullan; Corbin Bachmeier; William Stewart; Fiona Crawford
Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI.