Benoît Schoefs
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benoît Schoefs.
Current Pharmaceutical Biotechnology | 2012
Virginie Mimouni; Lionel Ulmann; Virginie Pasquet; Marie Mathieu; Gaël Bougaran; Jean-Paul Cadoret; Annick Morant-Manceau; Benoît Schoefs
Through the photosynthetic activity, microalgae process more than 25% of annual inorganic carbon dissolved in oceans into carbohydrates that ultimately, serve to feed the other levels of the trophic networks. Besides, microalgae synthesize bioactive molecules such as pigments and lipids that exhibit health properties. In addition, abiotic stresses, such as high irradiance, nutrient starvation, UV irradiation, trigger metabolic reorientations ending with the production of other bioactive compounds such as ω-3 fatty acids or carotenoids. Traditionally, these compounds are acquired through the dietary alimentation. The increasing, and often unsatisfied, demand for compounds from natural sources, combined with the decrease of the halieutic resources, forces the search for alternative resources for these bioactive components. Microalgae possess this strong potential. For instance, the diatom Odontella aurita is already commercialized as dietary complement and compete with fish oil for human nutrition. In this contribution, the microalga world is briefly presented. Then, the different types of biologically active molecules identified in microalgae are presented together with their potential use. Due to space limitation, only the biological activities of lipids and pigments are described in details. The contribution ends with a description of the possibilities to play with the environmental constrains to increase the productivity of biologically active molecules by microalgae and by a description of the progresses made in the field of alga culturing.
BMC Plant Biology | 2011
Achref Aloui; Ghislaine Recorbet; Franck Robert; Benoît Schoefs; Martine Bertrand; Céline Henry; Vivienne Gianinazzi-Pearson; Eliane Dumas-Gaudot; Samira Aschi‐Smiti
BackgroundArbuscular mycorrhizal (AM) fungi, which engage a mutualistic symbiosis with the roots of most plant species, have received much attention for their ability to alleviate heavy metal stress in plants, including cadmium (Cd). While the molecular bases of Cd tolerance displayed by mycorrhizal plants have been extensively analysed in roots, very little is known regarding the mechanisms by which legume aboveground organs can escape metal toxicity upon AM symbiosis. As a model system to address this question, we used Glomus irregulare-colonised Medicago truncatula plants, which were previously shown to accumulate and tolerate heavy metal in their shoots when grown in a substrate spiked with 2 mg Cd kg-1.ResultsThe measurement of three indicators for metal phytoextraction showed that shoots of mycorrhizal M. truncatula plants have a capacity for extracting Cd that is not related to an increase in root-to-shoot translocation rate, but to a high level of allocation plasticity. When analysing the photosynthetic performance in metal-treated mycorrhizal plants relative to those only Cd-supplied, it turned out that the presence of G. irregulare partially alleviated the negative effects of Cd on photosynthesis. To test the mechanisms by which shoots of Cd-treated mycorrhizal plants avoid metal toxicity, we performed a 2-DE/MALDI/TOF-based comparative proteomic analysis of the M. truncatula shoot responses upon mycorrhization and Cd exposure. Whereas the metal-responsive shoot proteins currently identified in non-mycorrhizal M. truncatula indicated that Cd impaired CO2 assimilation, the mycorrhiza-responsive shoot proteome was characterised by an increase in photosynthesis-related proteins coupled to a reduction in glugoneogenesis/glycolysis and antioxidant processes. By contrast, Cd was found to trigger the opposite response coupled the up-accumulation of molecular chaperones in shoot of mycorrhizal plants relative to those metal-free.ConclusionBesides drawing a first picture of shoot proteome modifications upon AM symbiosis and/or heavy metal stress in legume plants, the current work argues for allocation plasticity as the main driving force for Cd extraction in aboveground tissues of M. truncatula upon mycorrhization. Additionally, according to the retrieved proteomic data, we propose that shoots of mycorrhizal legume plants escape Cd toxicity through a metabolic shift implying the glycolysis-mediated mobilization of defence mechanisms at the expense of the photosynthesis-dependent symbiotic sucrose sink.
Cell Calcium | 2012
Hamid Manzoor; Annick Chiltz; Siham Madani; Parul Vatsa; Benoît Schoefs; Alain Pugin; Angela Garcia-Brugger
Calcium signatures induced by two elicitors of plant defense reactions, namely cryptogein and oligogalacturonides, were monitored at the subcellular level, using apoaequorin-transformed Nicotiana tabacum var Xanthi cells, in which the apoaequorin calcium sensor was targeted either to cytosol, mitochondria or chloroplasts. Our study showed that both elicitors induced specific Ca(2+) signatures in each compartment, with the most striking difference relying on duration. Common properties also emerged from the analysis of Ca(2+) signatures: both elicitors induced a biphasic cytosolic [Ca(2+)] elevation together with a single mitochondrial [Ca(2+)] elevation concomitant with the first cytosolic [Ca(2+)] peak. In addition, both elicitors induced a chloroplastic [Ca(2+)] elevation peaking later in comparison to cytosolic [Ca(2+)] elevation. In cryptogein-treated cells, pharmacological studies indicated that IP(3) should play an important role in Ca(2+) signaling contrarily to cADPR or nitric oxide, which have limited or no effect on [Ca(2+)] variations. Our data also showed that, depending on [Ca(2+)] fluxes at the plasma membrane, cryptogein triggered a mitochondrial respiration increase and affected excess energy dissipation mechanisms in chloroplasts. Altogether the results indicate that cryptogein profoundly impacted cell functions at many levels, including organelles.
Agronomy for Sustainable Development | 2014
Mohammad R. Sabzalian; Parisa Heydarizadeh; Morteza Zahedi; Amin Boroomand; Mehran Agharokh; Mohammad R. Sahba; Benoît Schoefs
In urban agriculture, plant growth is limited by the availability of light. Light emitting diodes (LED) could provide specific quality and quantity of light overcoming existing limitations for normal plant growth. However, there have been very few investigations on the applications of LED in incubators and plant growth chambers. The devices fabricated in this study, were lighted with 100xa0% red, 100xa0% blue, 70xa0% red plus 30xa0% blue, or 100xa0% white LED. We cultivated Mentha piperita, Mentha spicata and Mentha longifolia, lentil, basil, and four ornamentals to test the effect of various LED lights on plants productivity compared with field and greenhouse conditions. Our results show that 70/30xa0% red-blue LED light increased Mentha essential oil yield up to four times along with increases in plant photosynthesis and fresh weight compared with field condition. The red-blue LED incubator also led to a better growth of lentil and basil and to higher flower buds and less days to flowering for pot flowers versus greenhouse conditions. Our findings demonstrate that LED could improve economic characteristics of plant species by probably stimulating plant metabolism.
Cellular and Molecular Life Sciences | 2009
H. Nziengui; Benoît Schoefs
Abstract.Reticulons (RTNs) are membrane-spanning proteins sharing a typical domain named reticulon homology domain (RHD). RTN genes have been identified in all eukaryotic organisms examined so far, and the corresponding proteins have been found predominantly associated to the endoplasmic reticulum membranes. In animal and yeast, in which knowledge of the protein family is more advanced, RTNs are involved in numerous cellular processes such as apoptosis, cell division and intracellular trafficking. Up to now, a little attention has been paid to their plant counterparts, i.e., RTNLBs. In this review, we summarize the data available for RTNLB proteins and, using the data obtained with animal and yeast models, several functions for RTNLBs in plant cells are proposed and discussed.
Marine Drugs | 2015
Vinayak; Manoylov Km; Hélène Gateau; Blanckaert; Josiane Hérault; Pencréac'h G; Justine Marchand; Richard Gordon; Benoît Schoefs
The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors; (c) biodiversity and (d) stress physiology, illustrated with original results dealing with oleaginous diatoms.
Bioelectrochemistry | 2015
Mathilde Coustets; Vanessa Joubert-Durigneux; Josiane Hérault; Benoît Schoefs; Vincent Blanckaert; Jean-Pierre Garnier; Justin Teissié
Classical methods, used for large scale treatments such as mechanical or chemical extractions, affect the integrity of extracted cytosolic protein by releasing proteases contained in vacuoles. Our previous experiments on flow processes electroextraction on yeasts proved that pulsed electric field technology allows preserving the integrity of released cytosolic proteins, by not affecting vacuole membranes. Furthermore, large cell culture volumes are easily treated by the flow technology. Based on this previous knowledge, we developed a new protocol in order to electro-extract total cytoplasmic proteins from microalgae (Nannochloropsis salina, Chlorella vulgaris and Haematococcus pluvialis). Given that induction of electropermeabilization is under the control of target cell size, as the mean diameter for N. salina is only 2.5 μm, we used repetitive 2 ms long pulses of alternating polarities with stronger field strengths than previously described for yeasts. The electric treatment was followed by a 24h incubation period in a salty buffer. The amount of total protein release was observed by a classical Bradford assay. A more accurate evaluation of protein release was obtained by SDS-PAGE. Similar results were obtained with C. vulgaris and H. pluvialis under milder electrical conditions as expected from their larger size.
FEBS Letters | 2013
Azeez Beebo; John C. Mathai; Benoît Schoefs; Cornelia Spetea
Oxygenic photosynthetic organisms use sunlight energy to oxidize water to molecular oxygen. This process is mediated by the photosystem II complex at the lumenal side of the thylakoid membrane. Most research efforts have been dedicated to understanding the mechanism behind the unique water oxidation reactions, whereas the delivery pathways for water molecules into the thylakoid lumen have not yet been studied. The most common mechanisms for water transport are simple diffusion and diffusion facilitated by specialized channel proteins named aquaporins. Calculations using published data for plant chloroplasts indicate that aquaporins are not necessary to sustain water supply into the thylakoid lumen at steady state photosynthetic rates. Yet, arguments for their presence in the plant thylakoid membrane and beneficial action are presented.
PLOS ONE | 2015
Lisa Adolfsson; Katalin Solymosi; Mats X. Andersson; Áron Keresztes; Johan Uddling; Benoît Schoefs; Cornelia Spetea
Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.
Archive | 2009
Pascale Seddas; Vivienne Gianinazzi-Pearson; Benoît Schoefs; Helge Küster; Daniel Wipf
The study of symbiotic mycorrhizal associations is of fundamental and practical interest, raising questions about not only interorganism coevolution but also the ecological significance of the symbiosis in sustainable plant production systems. The partners in these associations belong to the Basidiomycota, Ascomycota or Glomeromycota, and about 95% of extant land plants. Successful colonization of roots by mycorrhizal fungi and subsequent effects on plant processes depend on recognition processes resulting from coordinated genetic programs in both partners and must be driven, at each stage, by reciprocal signaling events. This chapter summarizes current knowledge on communication and signaling in the two most frequent mycorrhizal associations: arbuscular mycorrhiza and ectomycorrhiza.