Benoît Vanderheyden
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benoît Vanderheyden.
Journal of Statistical Physics | 1998
Benoît Vanderheyden; Gordon Baym
We generalize the concept of conserving, Φ-derivable, approximations to relativistic field theories. Treating the interaction field as a dynamical degree of freedom, we derive the thermodynamic potential in terms of fully dressed propagators, an approach which allows us to resolve the entropy of a relativistic plasma into contributions from its interacting elementary excitations. We illustrate the derivation for a hot relativistic system governed by electromagnetic interactions.
Superconductor Science and Technology | 2007
Samuel Denis; Laurent Dusoulier; Michel Dirickx; Philippe Vanderbemden; Rudi Cloots; Marcel Ausloos; Benoît Vanderheyden
We have experimentally studied the magnetic shielding properties of a cylindrical shell of BiPbSrCaCuO subjected to low frequency AC axial magnetic fields. The magnetic response has been investigated as a function of the dimensions of the tube, the magnitude of the applied field and the frequency. These results are explained quantitatively by employing the method of Brandt (1998 Phys. Rev. B 58 6506) with a Jc(B) law appropriate for a polycrystalline material. Specifically, we observe that the applied field can sweep into the central region either through the thickness of the shield or through the opening ends, the latter mechanism being suppressed for long tubes. For the first time, we systematically detail the spatial variation of the shielding factor (the ratio of the applied field over the internal magnetic field) along the axis of a high-temperature superconducting tube. The shielding factor is shown to be constant in a region around the centre of the tube, and to decrease as an exponential in the vicinity of the ends. This spatial dependence comes from the competition between two mechanisms of field penetration. The frequency dependence of the shielding factor is also discussed and shown to follow a power law arising from the finite creep exponent n.
IEEE Transactions on Applied Superconductivity | 2010
Grégory Lousberg; Jean-François Fagnard; Marcel Ausloos; Philippe Vanderbemden; Benoît Vanderheyden
We study the magnetic shielding properties of hybrid ferromagnetic/superconductor (F/S) structures consisting of two coaxial cylinders, with one of each material. We use an axisymmetric finite-element model in which the electrical properties of the superconducting tube are modeled by a nonlinear E-J power law with a magnetic-field-dependent critical current density whereas the magnetic properties of the ferromagnetic material take saturation into account. We study and compare the penetration of a uniform axial magnetic field in two cases: 1) a ferromagnetic tube placed inside a larger superconducting tube (Ferro-In configuration) and 2) a ferromagnetic tube placed outside the superconducting one (Ferro-Out configuration). In both cases, we assess how the ferromagnetic tube improves the shielding properties of the sole superconducting tube. The influence of the geometrical parameters of the ferromagnetic tube is also studied: It is shown that, upon an optimal choice of the geometrical parameters, the range of magnetic fields that are efficiently shielded by the high-temperature superconductor tube alone can be increased by a factor of up to 7 (2) in a Ferro-Out (Ferro-In) configuration. The optimal configuration uses a 1020 carbon steel with a thickness of 2 mm and a height that is half that of the superconducting cylinder (80 mm).
Optics Express | 2013
Janusz Bogdanowicz; Matthieu Gilbert; Nicolas Innocenti; Sebastian Koelling; Benoît Vanderheyden; Wilfried Vandervorst
The problem of the absorption of light by a nanoscale dielectric cone is discussed. A simplified solution based on the analytical Mie theory of scattering and absorption by cylindrical objects is proposed and supported by the experimental observation of sharply localized holes in conical silicon tips after high-fluence irradiation. This study reveals that light couples with tapered objects dominantly at specific locations, where the local radius corresponds to one of the resonant radii of a cylindrical object, as predicted by Mie theory.
Physical Review D | 2001
Benoît Vanderheyden; A. D. Jackson
We apply a random matrix model to the study of the phase diagram of QCD with two colors, two flavors, and a small quark mass. Although the effects of temperature are only included schematically, this model reproduces most of the ground state predictions of chiral perturbation theory and also gives a qualitative picture of the phase diagram at all temperatures. It leads, however, to an unphysical behavior of the chiral order parameter and the baryon density in vacuum and does not support diquark condensation at arbitrarily high densities. A better treatment of temperature dependence leads to correct vacuum and small temperature properties. We compare our results at both high and low densities with the results of microscopic calculations using the Nambu-Jona-Lasinio model and discuss the effects of large momentum scales on the variations of condensation fields with chemical potential.
Physical Review D | 2000
Benoît Vanderheyden; A. D. Jackson
We consider a random matrix model which describes the competition between chiral symmetry breaking and the formation of quark Cooper pairs in QCD at finite density. We study the evolution of the phase structure in temperature and chemical potential with variations of the strength of the interaction in the quark-quark channel and demonstrate that the phase diagram can realize a total of six different topologies. A vector interaction representing single-gluon exchange reproduces a topology commonly encountered in previous QCD models, in which a low-density chiral broken phase is separated from a high-density diquark phase by a first-order line. The other five topologies either do not possess a diquark phase or display a new phase and new critical points. Since these five cases require large variations of the coupling constants away from the values expected for a vector interaction, we conclude that the phase diagram of finite density QCD has the topology suggested by single-gluon exchange and that this topology is robust.
Superconductor Science and Technology | 2015
Matthieu Philippe; Mark Douglas Ainslie; Laurent Wera; Jean-François Fagnard; Anthony R. Dennis; Yunhua Shi; D.A. Cardwell; Benoît Vanderheyden; Philippe Vanderbemden
Bulk, high temperature superconductors have significant potential for use as powerful permanent magnets in a variety of practical applications due to their ability to trap record magnetic fields. In this paper, soft ferromagnetic sections are combined with a bulk, large grain Y–Ba–Cu–O high temperature superconductor to form superconductor/ferromagnet hybrid structures. We study how the ferromagnetic sections influence the shape of the profile of the trapped magnetic induction at the surface of each structure and report the surface magnetic flux density measured by Hall probe mapping. These configurations have been modelled using a 2D axisymmetric finite element method based on the H -formulation and the results show excellent qualitative and quantitative agreement with the experimental measurements. The model has also been used to study the magnetic flux distribution and predict the behaviour for other constitutive laws and geometries. The results show that the ferromagnetic material acts as a magnetic shield, but the flux density and its gradient are enhanced on the face opposite to the ferromagnet. The thickness and saturation magnetization of the ferromagnetic material are important and a characteristic ferromagnet thickness d* is derived: below d*, saturation of the ferromagnet occurs, and above d*, a weak thickness-dependence is observed. The influence of the ferromagnet is observed even if its saturation magnetization is lower than the trapped flux density of the superconductor. Conversely, thin ferromagnetic discs can be driven to full saturation even though the outer magnetic field is much smaller than their saturation magnetization.
Journal of Applied Physics | 2010
Jean-François Fagnard; Michel Dirickx; George A. Levin; Paul N. Barnes; Benoît Vanderheyden; Philippe Vanderbemden
Abstract : This paper reports the results of an experimental investigation of the performance of two types of magnetic screens assembled from YBa2Cu3O7-delta; (YBCO) coated conductors. Since effective screening of the axial dc magnetic field requires the unimpeded flow of an azimuthal persistent current, we demonstrate a configuration of a screening shell made out of standard YBCO coated conductor capable to accomplish that. The screen allows the persistent current to flow in the predominantly azimuthal direction at a temperature of 77 K. The persistent screen, incorporating a single layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes, another type of screen which incorporates low critical temperature quasipersistent joints was also built. The shielding technique we describe here appears to be especially promising for the realization of large scale high-T(sub c) superconducting screens.
Superconductor Science and Technology | 2011
Grégory Lousberg; Jean-François Fagnard; X. Chaud; Marcel Ausloos; Philippe Vanderbemden; Benoît Vanderheyden
It is shown that filling the holes of a drilled bulk high-temperature superconductor (HTS) with a soft ferromagnetic powder enhances its trapping properties. The magnetic properties of the trapped field magnet are characterized by Hall probe mapping and magnetization measurements. This analysis is completed by a numerical model based on a 3D finite-element method where the conductivity of the superconducting material is described by a power law while the permeability of the ferromagnetic material is fixed to a given value and is considered uniform. Numerical results support the experimental observations. In particular, they confirm the increase of trapped flux that is observed with Hall probe mapping after impregnation.
Superconductor Science and Technology | 2007
Samuel Denis; Michel Dirickx; Philippe Vanderbemden; Marcel Ausloos; Benoît Vanderheyden
Using the numerical method of Brandt (1998 Phys. Rev. B 58 6506), we study the penetration of a uniform magnetic field that is gradually applied parallel to the axis of finite type-II superconducting tubular samples with strong pinning. This study is carried out in view of designing low-frequency magnetic shields by exploiting the diamagnetic properties of type-II superconductors. First, we compare the field penetration into open and closed tubes. For long tubes (length larger than three times the outer diameter), we show that a cap weakly affects the maximum magnetic induction that can be shielded, but greatly increases the region over which the field is nearly uniform. When the length of the tube is shorter, both the maximum shieldable magnetic induction and the uniformity of the field attenuation are enhanced by closing the tube. We also show that making a hole in the cap, which is often necessary for applications, does not greatly affect the shielding properties provided the diameter of the hole is small compared to that of the tube (hole diameter smaller than a quarter of the outer tube diameter). In view of designing large size magnetic shields, superconducting tubes of finite size need to be joined together. We therefore examine in a second part how the presence of a non-superconducting joint between the tubes affects the shielding efficiency. It is shown that the effect of a joint depends upon its position along the tube axis and strongly increases with its size. Third, we study how non-uniform superconducting properties affect the shielding capabilities.