Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bensheng Ju is active.

Publication


Featured researches published by Bensheng Ju.


Nature Genetics | 2014

The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma.

Gang Wu; Alexander K. Diaz; Barbara S. Paugh; Sherri Rankin; Bensheng Ju; Yongjin Li; Xiaoyan Zhu; Chunxu Qu; Xiang Chen; Junyuan Zhang; John Easton; Michael Edmonson; Xiaotu Ma; Charles Lu; Panduka Nagahawatte; Erin Hedlund; Michael Rusch; Stanley Pounds; Tong Lin; Arzu Onar-Thomas; Robert Huether; Richard W. Kriwacki; Matthew A. Parker; Pankaj Gupta; Jared Becksfort; Lei Wei; Heather L. Mulder; Kristy Boggs; Bhavin Vadodaria; Donald Yergeau

Pediatric high-grade glioma (HGG) is a devastating disease with a less than 20% survival rate 2 years after diagnosis. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs), by whole-genome, whole-exome and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPGs (32%), in addition to previously reported frequent somatic mutations in histone H3 genes, TP53 and ATRX, in both DIPGs and NBS-HGGs. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, NTRK2 and NTRK3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase–RAS-PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59% of pediatric HGGs, respectively, including in DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.


Nature | 2016

Active medulloblastoma enhancers reveal subgroup-specific cellular origins

Charles Y. Lin; Serap Erkek; Yiai Tong; Linlin Yin; Alexander J. Federation; Marc Zapatka; Parthiv Haldipur; Daisuke Kawauchi; Thomas Risch; Hans Jörg Warnatz; Barbara C. Worst; Bensheng Ju; Brent A. Orr; Rhamy Zeid; Donald R. Polaski; Maia Segura-Wang; Sebastian M. Waszak; David T. W. Jones; Marcel Kool; Volker Hovestadt; Ivo Buchhalter; Laura Sieber; Pascal Johann; Lukas Chavez; Stefan Gröschel; Marina Ryzhova; Andrey Korshunov; Wenbiao Chen; Victor V. Chizhikov; Kathleen J. Millen

Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Conditional control of gene function by an invertible gene trap in zebrafish

Terri T. Ni; Jianjun Lu; Meiying Zhu; Lisette A. Maddison; Kelli L. Boyd; Lindsey Huskey; Bensheng Ju; Daniel Hesselson; Tao P. Zhong; Patrick S. Page-McCaw; Didier Y. R. Stainier; Wenbiao Chen

Conditional mutations are essential for determining the stage- and tissue-specific functions of genes. Here we achieve conditional mutagenesis in zebrafish using FT1, a gene-trap cassette that can be stably inverted by both Cre and Flp recombinases. We demonstrate that intronic insertions in the gene-trapping orientation severely disrupt the expression of the host gene, whereas intronic insertions in the neutral orientation do not significantly affect host gene expression. Cre- and Flp-mediated recombination switches the orientation of the gene-trap cassette, permitting conditional rescue in one orientation and conditional knockout in the other. To illustrate the utility of this system we analyzed the functional consequence of intronic FT1 insertion in supv3l1, a gene encoding a mitochondrial RNA helicase. Global supv311 mutants have impaired mitochondrial function, embryonic lethality, and agenesis of the liver. Conditional rescue of supv311 expression in hepatocytes specifically corrected the liver defects. To test whether the liver function of supv311 is required for viability we used Flp-mediated recombination in the germline to generate a neutral allele at the locus. Subsequently, tissue-specific expression of Cre conditionally inactivated the targeted locus. Hepatocyte-specific inactivation of supv311 caused liver degeneration, growth retardation, and juvenile lethality, a phenotype that was less severe than the global disruption of supv311. Thus, supv311 is required in multiple tissues for organismal viability. Our mutagenesis approach is very efficient and could be used to generate conditional alleles throughout the zebrafish genome. Furthermore, because FT1 is based on the promiscuous Tol2 transposon, it should be applicable to many organisms.


Molecular Cancer | 2009

Co-activation of hedgehog and AKT pathways promote tumorigenesis in zebrafish.

Bensheng Ju; Jan M. Spitsbergen; Christopher Eden; Michael R. Taylor; Wenbiao Chen

The zebrafish has become an important model for cancer research. Several cancer models have been established by transgenic expression of human or mouse oncogenes in zebrafish. Since it is amenable to efficient transgenesis, zebrafish have immense potential to be used for studying interaction of oncogenes and pathways at the organismal level. Using the Gal4VP16-UAS binary transgenic expression approach, we established stable transgenic lines expressing an EGFP fusion protein of an activated zebrafish Smoothened (Smoa1-EGFP). Expression of the zebrafish Smoa1-EGFP itself did not lead to tumor formation either in founder fish or subsequent generations, however, co-expressing a constitutively active human AKT1 resulted in several tumor types, including spindle cell sarcoma, rhabdomyoma, ocular melanoma, astrocytoma, and myoxma. All tumor types showed GFP expression and increased Patched 1 levels, suggesting involvement of zebrafish Smoa1 in tumorigenesis. Immunofluorescence studies showed that tumors also expressed elevated levels of phosphorylated AKT, indicating activation of the PI3K-AKT pathway. These results suggest that co-activation of the hedgehog and AKT pathways promote tumorigenesis, and that the binary transgenic approach is a useful tool for studying interaction of oncogenes and oncogenic pathways in zebrafish.


Oncogene | 2015

Orthotopic models of pediatric brain tumors in zebrafish

Christopher Eden; Bensheng Ju; Mohankumar Murugesan; Timothy N. Phoenix; Birgit Nimmervoll; Yiai Tong; David W. Ellison; David Finkelstein; Karen Wright; Nidal Boulos; Jason Dapper; Radhika Thiruvenkatam; Charles A. Lessman; Michael R. Taylor; Richard J. Gilbertson

High-throughput screens (HTS) of compound toxicity against cancer cells can identify thousands of potential new drug-leads. But only limited numbers of these compounds can progress to expensive and labor-intensive efficacy studies in mice, creating a ‘bottle neck’ in the drug development pipeline. Approaches that triage drug-leads for further study are greatly needed. Here we provide an intermediary platform between HTS and mice by adapting mouse models of pediatric brain tumors to grow as orthotopic xenografts in the brains of zebrafish. Freshly isolated mouse ependymoma, glioma and choroid plexus carcinoma cells expressing red fluorescence protein were conditioned to grow at 34 °C. Conditioned tumor cells were then transplanted orthotopically into the brains of zebrafish acclimatized to ambient temperatures of 34 °C. Live in vivo fluorescence imaging identified robust, quantifiable and reproducible brain tumor growth as well as spinal metastasis in zebrafish. All tumor xenografts in zebrafish retained the histological characteristics of the corresponding parent mouse tumor and efficiently recruited fish endothelial cells to form a tumor vasculature. Finally, by treating zebrafish harboring ERBB2-driven gliomas with an appropriate cytotoxic chemotherapy (5-fluorouracil) or tyrosine kinase inhibitor (erlotinib), we show that these models can effectively assess drug efficacy. Our data demonstrate, for the first time, that mouse brain tumors can grow orthotopically in fish and serve as a platform to study drug efficacy. As large cohorts of brain tumor-bearing zebrafish can be generated rapidly and inexpensively, these models may serve as a powerful tool to triage drug-leads from HTS for formal efficacy testing in mice.


Human Molecular Genetics | 2014

Zebrafish Cacna1fa is required for cone photoreceptor function and synaptic ribbon formation

Sujuan Jia; Akira Muto; Wilda Orisme; Hannah E. Henson; Chaithanyarani Parupalli; Bensheng Ju; Herwig Baier; Michael R. Taylor

Mutations in the human CACNA1F gene cause incomplete congenital stationary night blindness type 2 (CSNB2), a non-progressive, clinically heterogeneous retinal disorder. However, the molecular mechanisms underlying CSNB2 have not been fully explored. Here, we describe the positional cloning of a blind zebrafish mutant, wait until dark (wud), which encodes a zebrafish homolog of human CACNA1F. We identified two zebrafish cacna1f paralogs and showed that the cacna1fa transcript (the gene mutated in wud) is expressed exclusively in the photoreceptor layer. We demonstrated that Cacna1fa localizes at the photoreceptor synapse and is absent from wud mutants. Electroretinograms revealed abnormal cone photoreceptor responses from wud mutants, indicating a defect in synaptic transmission. Although there are no obvious morphological differences, we found that wud mutants lacked synaptic ribbons and that wud is essential for the development of synaptic ribbons. We found that Ribeye, the most prominent synaptic ribbon protein, was less abundant and mislocalized in adult wud mutants. In addition to cloning wud, we identified synaptojanin 1 (synj1) as the defective gene in slacker (slak), a blind mutant with floating synaptic ribbons. We determined that Cacna1fa was expressed in slak photoreceptors and that Synj1 was initially expressed wud photoreceptors, but was absent by 5 days postfertilization. Collectively, our data demonstrate that Cacna1fa is essential for cone photoreceptor function and synaptic ribbon formation and reveal a previously unknown yet critical role of L-type voltage-dependent calcium channels in the expression and/or distribution of synaptic ribbon proteins, providing a new model to study the clinical variability in human CSNB2 patients.


Molecular Cancer | 2015

Oncogenic KRAS promotes malignant brain tumors in zebrafish

Bensheng Ju; Wenbiao Chen; Brent A. Orr; Jan M. Spitsbergen; Sujuan Jia; Christopher Eden; Hannah E. Henson; Michael R. Taylor

BackgroundZebrafish have been used as a vertebrate model to study human cancers such as melanoma, rhabdomyosarcoma, liver cancer, and leukemia as well as for high-throughput screening of small molecules of therapeutic value. However, they are just emerging as a model for human brain tumors, which are among the most devastating and difficult to treat. In this study, we evaluated zebrafish as a brain tumor model by overexpressing a human version of oncogenic KRAS (KRASG12V).MethodsUsing zebrafish cytokeratin 5 (krt5) and glial fibrillary acidic protein (gfap) gene promoters, we activated Ras signaling in the zebrafish central nervous system (CNS) through transient and stable transgenic overexpression. Immunohistochemical analyses were performed to identify activated pathways in the resulting brain tumors. The effects of the MEK inhibitor U0126 on oncogenic KRAS were evaluated.ResultsWe demonstrated that transient transgenic expression of KRASG12V in putative neural stem and/or progenitor cells induced brain tumorigenesis. When expressed under the control of the krt5 gene promoter, KRASG12V induced brain tumors in ventricular zones (VZ) at low frequency. The majority of other tumors were composed mostly of spindle and epithelioid cells, reminiscent of malignant peripheral nerve sheath tumors (MPNSTs). In contrast, when expressed under the control of the gfap gene promoter, KRASG12V induced brain tumors in both VZs and brain parenchyma at higher frequency. Immunohistochemical analyses indicated prominent activation of the canonical RAS-RAF-ERK pathway, variable activation of the mTOR pathway, but no activation of the PI3K-AKT pathway. In a krt5-derived stable and inducible transgenic line, expression of oncogenic KRAS resulted in skin hyperplasia, and the MEK inhibitor U0126 effectively suppressed this pro-proliferative effects. In a gfap-derived stable and inducible line, expression of oncogenic KRAS led to significantly increased mitotic index in the spinal cord.ConclusionsOur studies demonstrate that zebrafish could be explored to study cellular origins and molecular mechanisms of brain tumorigenesis and could also be used as a platform for studying human oncogene function and for discovering oncogenic RAS inhibitors.


Oncogenesis | 2014

Activation of Sonic hedgehog signaling in neural progenitor cells promotes glioma development in the zebrafish optic pathway

Bensheng Ju; Wenbiao Chen; Jan M. Spitsbergen; Jianjun Lu; Vogel P; Peters Jl; Wang Yd; Brent A. Orr; Wu J; Hannah E. Henson; Sujuan Jia; Chaithanyarani Parupalli; Michael R. Taylor

Dysregulation of Sonic hedgehog (Shh) signaling has been implicated in glioma pathogenesis. Yet, the role of this pathway in gliomagenesis remains controversial because of the lack of relevant animal models. Using the cytokeratin 5 promoter, we ectopically expressed a constitutively active zebrafish Smoothened (Smoa1) in neural progenitor cells and analyzed tumorigenic capacity of activated Shh signaling in both transient and stable transgenic fish. Transient transgenic fish overexpressing Smoa1 developed retinal and brain tumors, suggesting smoa1 is oncogenic in the zebrafish central nervous system (CNS). We further established stable transgenic lines that simultaneously developed optic pathway glioma (OPG) and various retinal tumors. In one of these lines, up to 80% of F1 and F2 fish developed tumors within 1 year of age. Microarray analysis of tumor samples showed upregulated expression of genes involved in the cell cycle, cancer signaling and Shh downstream targets ptc1, gli1 and gli2a. Tumors also exhibited specific gene signatures characteristic of radial glia and progenitor cells as transcriptions of radial glia genes cyp19a1b, s100β, blbp, gfap and the stem/progenitor genes nestin and sox2 were significantly upregulated. Overexpression of GFAP, S100β, BLBP and Sox2 was confirmed by immunofluorescence. We also detected overexpression of Mdm2 throughout the optic pathway in fish with OPG, therefore implicating the Mdm2–Tp53 pathway in glioma pathogenesis. In conclusion, we demonstrate that activated Shh signaling initiates tumorigenesis in the zebrafish CNS and provide the first OPG model not associated with neurofibromatosis 1.


Developmental Biology | 2017

CNS angiogenesis and barriergenesis occur simultaneously

Robyn A. Umans; Hannah E. Henson; Fangzhou Mu; Chaithanyarani Parupalli; Bensheng Ju; Jennifer L. Peters; Kevin A. Lanham; Jessica Plavicki; Michael R. Taylor

The blood-brain barrier (BBB) plays a vital role in the central nervous system (CNS). A comprehensive understanding of BBB development has been hampered by difficulties in observing the differentiation of brain endothelial cells (BECs) in real-time. Here, we generated two transgenic zebrafish line, Tg(glut1b:mCherry) and Tg(plvap:EGFP), to serve as in vivo reporters of BBB development. We showed that barriergenesis (i.e. the induction of BEC differentiation) occurs immediately as endothelial tips cells migrate into the brain parenchyma. Using the Tg(glut1b:mCherry) transgenic line, we performed a genetic screen and identified a zebrafish mutant with a nonsense mutation in gpr124, a gene known to play a role in CNS angiogenesis and BBB development. We also showed that our transgenic plvap:EGFP line, a reporter of immature brain endothelium, is initially expressed in newly formed brain endothelial cells, but subsides during BBB maturation. Our results demonstrate the ability to visualize the in vivo differentiation of brain endothelial cells into the BBB phenotype and establish that CNS angiogenesis and barriergenesis occur simultaneously.


Frontiers in Neuroscience | 2014

Functional and genetic analysis of choroid plexus development in zebrafish

Hannah E. Henson; Chaithanyarani Parupalli; Bensheng Ju; Michael R. Taylor

The choroid plexus, an epithelial-based structure localized in the brain ventricle, is the major component of the blood-cerebrospinal fluid barrier. The choroid plexus produces the cerebrospinal fluid and regulates the components of the cerebrospinal fluid. Abnormal choroid plexus function is associated with neurodegenerative diseases, tumor formation in the choroid plexus epithelium, and hydrocephaly. In this study, we used zebrafish (Danio rerio) as a model system to understand the genetic components of choroid plexus development. We generated an enhancer trap line, Et(cp:EGFP)sj2, that expresses enhanced green fluorescent protein (EGFP) in the choroid plexus epithelium. Using immunohistochemistry and fluorescent tracers, we demonstrated that the zebrafish choroid plexus possesses brain barrier properties such as tight junctions and transporter activity. Thus, we have established zebrafish as a functionally relevant model to study choroid plexus development. Using an unbiased approach, we performed a forward genetic dissection of the choroid plexus to identify genes essential for its formation and function. Using Et(cp:EGFP)sj2, we isolated 10 recessive mutant lines with choroid plexus abnormalities, which were grouped into five classes based on GFP intensity, epithelial localization, and overall choroid plexus morphology. We also mapped the mutation for two mutant lines to chromosomes 4 and 21, respectively. The mutants generated in this study can be used to elucidate specific genes and signaling pathways essential for choroid plexus development, function, and/or maintenance and will provide important insights into how these genetic mutations contribute to disease.

Collaboration


Dive into the Bensheng Ju's collaboration.

Top Co-Authors

Avatar

Michael R. Taylor

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Hannah E. Henson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chaithanyarani Parupalli

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Brent A. Orr

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Christopher Eden

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sujuan Jia

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Yiai Tong

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge