Benyuan Zhu
Alcatel-Lucent
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benyuan Zhu.
Optics Express | 2010
Benyuan Zhu; Thierry F. Taunay; M. F. Yan; John M. Fini; M. Fishteyn; E. M. Monberg
We design and fabricate a novel multicore fiber (MCF), with seven cores arranged in a hexagonal array. The fiber properties of MCF including low crosstalk, attenuation and splice loss are described. A new tapered MCF connector (TMC), showing ultra-low crosstalk and losses, is also designed and fabricated for coupling the individual signals in-and-out of the MCF. We further propose a novel network configuration using parallel transmissions with the MCF and TMC for passive optical network (PON). To the best of our knowledge, we demonstrate the first bi-directional parallel transmissions of 1310 nm and 1490 nm signals over 11.3-km of seven-core MCF with 64-way splitter for PON.
Optics Express | 2011
Benyuan Zhu; Thierry F. Taunay; M. Fishteyn; Xiang Liu; S. Chandrasekhar; M. F. Yan; John M. Fini; E. M. Monberg
We describe a new multicore fiber (MCF) having seven single-mode cores arranged in a hexagonal array, exhibiting low crosstalk among the cores and low loss across the C and L bands. We experimentally demonstrate a record transmission capacity of 112 Tb/s over a 76.8-km MCF using space-division multiplexing and dense wavelength-division multiplexing (DWDM). Each core carries 160 107-Gb/s polarization-division multiplexed quadrature phase-shift keying (PDM-QPSK) channels on a 50-GHz grid in the C and L bands, resulting in an aggregate spectral efficiency of 14 b/s/Hz. We further investigate the impact of the inter-core crosstalk on a 107-Gb/s PDM-QPSK signal after transmitting through the center core of the MCF when all the 6 outer cores carry same-wavelength 107-Gb/s signals with equal powers, and discuss the system implications of core-to-core crosstalk on ultra-long-haul transmission.
Journal of Lightwave Technology | 2011
Xiang Liu; S. Chandrasekhar; Benyuan Zhu; Peter J. Winzer; Alan H. Gnauck; David W. Peckham
We propose a novel coherent optical orthogonal frequency-division multiplexing (CO-OFDM) scheme with reduced guard interval (RGI) for high-speed high-spectral-efficiency long-haul optical transmission. In this scheme, fiber chromatic dispersion is compensated for within the receiver rather than being accommodated by the guard interval (GI) as in conventional CO-OFDM, thereby reducing the needed GI, especially when fiber dispersion is large. We demonstrate the generation of a 448-Gb/s RGI-CO-OFDM signal with 16-QAM subcarrier modulation through orthogonal band multiplexing. This signal occupies an optical bandwidth of 60 GHz, and is transmitted over 2000 km of ultra-large-area fiber (ULAF) with five passes through an 80-GHz-grid wavelength-selective switch. Banded digital coherent detection with two detection bands is used to receive this 448-Gb/s signal. Wavelength-division multiplexed transmission of three 80-GHz spaced 448-Gb/s RGI-CO-OFDM channels is also demonstrated, achieving a net system spectral efficiency of 5.2 b/s/Hz and a transmission distance of 1600 km of ULAF.
Journal of Lightwave Technology | 2004
Stephan Wielandy; Michael Fishteyn; Benyuan Zhu
A definitive goal for optical performance monitoring in an optical communications network is to provide comprehensive signal quality information in a cost-effective manner. This paper explores in detail the possibility of using nonlinear optical detection to achieve this goal. Sensitive nonlinear detection techniques commonly used in the field of ultrafast optics are applied to the problem of performance monitoring and are shown to allow quantitative measurements to be made of quantities such as accumulated chromatic dispersion, polarization-mode dispersion impairment, optical signal-to-noise ratio, and extinction ratio. Experiments performed on a 40-Gb/s transmission system demonstrate the immediate viability of this approach for measuring these quantities of interest at practical optical power levels.
Optics Express | 2011
Kazi S. Abedin; Thierry F. Taunay; M. Fishteyn; M. F. Yan; Benyuan Zhu; John M. Fini; E. M. Monberg; P. W. Wisk
A multicore erbium-doped fiber (MC-EDF) amplifier for simultaneous amplification in the 7-cores has been developed, and the gain and noise properties of individual cores have been studied. The pump and signal radiation were coupled to individual cores of MC-EDF using two tapered fiber bundled (TFB) couplers with low insertion loss. For a pump power of 146 mW, the average gain achieved in the MC-EDF fiber was 30 dB, and noise figure was less than 4 dB. The net useful gain from the multicore-amplifier, after taking into consideration of all the passive losses, was about 23-27 dB. Pump induced ASE noise transfer between the neighboring channel was negligible.
Optics Express | 2010
John M. Fini; Benyuan Zhu; Thierry F. Taunay; Man F. Yan
A statistical theory for crosstalk in multicore fibers is derived from coupled-mode equations including bend-induced perturbations. Bends are shown to play a crucial role in crosstalk, explaining large disagreement between experiments and previous calculations. The average crosstalk of a fiber segment is related to the statistics of the bend radius and orientation, including spinning along the fiber length. This framework allows efficient and accurate estimates of cross-talk for realistic telecommunications links.
european conference on optical communication | 2010
Peter J. Winzer; Alan H. Gnauck; S. Chandrasekhar; Steve Draving; J. Evangelista; Benyuan Zhu
We generate 56-Gbaud PDM 16-QAM using electronic time-division multiplexing (ETDM) and a four-level-driven I/Q modulator. The 448-Gb/s line-rate signal is transmitted over 1,200 km of ultra-large-area fiber and coherently received by two 32.5-GHz oscilloscopes with >5.5 effective bits.
Journal of Lightwave Technology | 2011
Alan H. Gnauck; Peter J. Winzer; S. Chandrasekhar; Xiang Liu; Benyuan Zhu; David W. Peckham
We discuss the generation, wavelength-division-multiplexed (WDM) long-haul transmission, and coherent detection of 224-Gb/s polarization-division-multiplexed (PDM) 16-ary quadrature amplitude modulation (16-QAM) at a line rate of 28 Gbaud. We measure a required optical signal-to-noise ratio of 23.4 dB (0.1-nm reference bandwidth; 10-3 bit-error ratio), 3.4-dB off the theoretical limit. Using ultra-large-area fiber, we achieve 2000-km single-channel transmission. We also demonstrate 1200-km WDM transmission on a 50-GHz grid (4-b/s/Hz spectral efficiency), including three passes through a wavelength-selective switch.
Journal of Lightwave Technology | 2011
Xiang Zhou; Jianjun Yu; Ming-Fang Huang; Yin Shao; Ting Wang; Lynn E. Nelson; Peter Magill; Martin Birk; Peter Ingo Borel; David W. Peckham; Robert Lingle; Benyuan Zhu
We report the successful transmission of 64 Tb/s capacity (640 ×107 Gb/s with 12.5 GHz channel spacing) over 320 km reach utilizing 8-THz of spectrum in the C+L -bands at a net spectral efficiency of 8 bit/s/Hz. Such a result is accomplished by the use of raised-cosine pulse-shaped PDM-36QAM modulation, intradyne detection, both pre- and post-transmission digital equalization, and ultra-large-area fiber. We discuss in detail the digital modulation technology and signal processing algorithms used in the experiment, including a new two-stage, blind frequency-search-based frequency-offset estimation algorithm and a more computationally efficient carrier-phase recovery algorithm.
Optics Express | 2012
Kazi S. Abedin; Thierry F. Taunay; M. Fishteyn; David J. DiGiovanni; V. R. Supradeepa; John M. Fini; M. F. Yan; Benyuan Zhu; E. M. Monberg
A cladding pumped multicore erbium-doped fiber amplifier for simultaneous amplification of 6 channels is demonstrated. Peak gain over 32 dB has been obtained at a wavelength of 1560 nm and the bandwidth measured at 20-dB gain was about 35 nm. Numerical modeling of cladding pumped multicore erbium-doped amplifier was also performed to study the properties of the amplifier. The results of experiment and simulation are found to be in good agreement.