Beomjin Kwon
Korea Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beomjin Kwon.
Nature Communications | 2016
Sung Hoon Park; Seungki Jo; Beomjin Kwon; Frederick Kim; Hyeong Woo Ban; Ji Eun Lee; Da Hwi Gu; Se Hwa Lee; Younghun Hwang; Jin-Sang Kim; Dow-Bin Hyun; Sukbin Lee; Kyoung Jin Choi; Wook Jo; Jae Sung Son
Output power of thermoelectric generators depends on device engineering minimizing heat loss as well as inherent material properties. However, the device engineering has been largely neglected due to the limited flat or angular shape of devices. Considering that the surface of most heat sources where these planar devices are attached is curved, a considerable amount of heat loss is inevitable. To address this issue, here, we present the shape-engineerable thermoelectric painting, geometrically compatible to surfaces of any shape. We prepared Bi2Te3-based inorganic paints using the molecular Sb2Te3 chalcogenidometalate as a sintering aid for thermoelectric particles, with ZT values of 0.67 for n-type and 1.21 for p-type painted materials that compete the bulk values. Devices directly brush-painted onto curved surfaces produced the high output power of 4.0 mW cm−2. This approach paves the way to designing materials and devices that can be easily transferred to other applications.
Review of Scientific Instruments | 2012
Beomjin Kwon; Matthew R. Rosenberger; Rohit Bhargava; David G. Cahill; William P. King
This paper investigates the dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by an infrared laser operating at a wavelenegth of 10.35 μm. A model relates incident radiation, heat transfer, temperature distribution in the cantilever, and thermal expansion mismatch to find the cantilever displacement. Experiments were conducted on two custom-fabricated bimaterial cantilevers and two commercially available bimaterial microcantilevers. The cantilever response was measured as a function of the modulation frequency of the laser over the range of 0.01-30 kHz. The model and the method of cantilever displacement calibration can be applied for bimaterial cantilever with thick coating layer. The sensitivity and signal-to-noise of bimaterial cantilevers were evaluated in terms of either total incident power or incident flux. The custom-fabricated bimaterial cantilevers showed 9X or 190X sensitivity improvement compared to commercial cantilevers. The detection limit on incident flux is as small as 0.10 pW μm(-2) Hz(-1/2).
Nanoscale and Microscale Thermophysical Engineering | 2011
Beomjin Kwon; Cheng Wang; Keunhan Park; Rohit Bhargava; William P. King
This article reports the thermomechanical sensitivity of bimaterial cantilevers over a mid-infrared (IR) spectral range (5–10 μm) that is critical both for chemical analyses via vibrational spectroscopy and for direct thermal detection in the 300–700 K range. A physics-based model of cantilever bending was developed by including heat transfer to and within the cantilever, temperature-dependent cantilever bending, and cantilever and optical system IR characteristics. Detailed measurements of the optical system IR characteristics were used as inputs to the model, including Fourier transform infrared (FT-IR) spectral characterization of cantilever absorbance as well as characterization of the light source and monochromator. Mechanical bending sensitivity and noise were modeled and measured for six commercially available microcantilevers, which consist of either an aluminum film on a silicon cantilever or a gold film on a silicon nitride cantilever. The spectral sensitivity of each cantilever was measured by recording cantilever deflection when illuminated with IR light from a monochromator. Predictions of cantilever bending sensitivity and noise compare very well with measurements over the entire spectral range with no fitting parameters or normalization. The results are used to rank the cantilevers for their potential use in IR measurements.
Review of Scientific Instruments | 2014
Beomjin Kwon; Seung-Hyub Baek; Seong Keun Kim; Jin-Sang Kim
Harman method is a rapid and simple technique to measure thermoelectric properties. However, its validity has been often questioned due to the over-simplified assumptions that this method relies on. Here, we quantitatively investigate the influence of the previously ignored parasitic thermal effects on the Harman method and develop a method to determine an intrinsic ZT. We expand the original Harman relation with three extra terms: heat losses via both the lead wires and radiation, and Joule heating within the sample. Based on the expanded Harman relation, we use differential measurement of the sample geometry to measure the intrinsic ZT. To separately evaluate the parasitic terms, the measured ZTs with systematically varied sample geometries and the lead wire types are fitted to the expanded relation. A huge discrepancy (∼28%) of the measured ZTs depending on the measurement configuration is observed. We are able to separately evaluate those parasitic terms. This work will help to evaluate the intrinsic thermoelectric property with Harman method by eliminating ambiguities coming from extrinsic effects.
Scientific Reports | 2015
Seong Keun Kim; Shin-Ik Kim; Hyungkwang Lim; Doo Seok Jeong; Beomjin Kwon; Seung-Hyub Baek; Jin-Sang Kim
The two-dimensional electron gas (2DEG) at the interface between insulating LaAlO3 and SrTiO3 is intriguing both as a fundamental science topic and for possible applications in electronics or sensors. For example, because the electrical conductance of the 2DEG at the LaAlO3/SrTiO3 interface can be tuned by applying an electric field, new electronic devices utilizing the 2DEG at the LaAlO3/SrTiO3 interface could be possible. For the implementation of field-effect devices utilizing the 2DEG, determining the on/off switching voltage for the devices and ensuring their stability are essential. However, the factors influencing the threshold voltage have not been extensively investigated. Here, we report the voltage-induced shift of the threshold voltage of Pt/LaAlO3/SrTiO3 heterostructures. A large negative voltage induces an irreversible positive shift in the threshold voltage. In fact, after the application of such a large negative voltage, the original threshold voltage cannot be recovered even by application of a large positive electric field. This irreversibility is attributed to the generation of deep traps near the LaAlO3/SrTiO3 interface under the negative voltage. This finding could contribute to the implementation of nanoelectronic devices using the 2DEG at the LaAlO3/SrTiO3 interface.
Ultramicroscopy | 2012
Beomjin Kwon; Matthew V. Schulmerich; L. J. Elgass; Rong Kong; Sarah E. Holton; Rohit Bhargava; William P. King
This paper reports nanotopography and mid infrared (IR) microspectroscopic imaging coupled within the same atomic force microscope (AFM). The reported advances are enabled by using a bimaterial microcantilever, conventionally used for standard AFM imaging, as a detector of monochromatic IR light. IR light intensity is recorded as thermomechanical bending of the cantilever measured upon illumination with intensity-modulated, narrowband radiation. The cantilever bending is then correlated with the samples IR absorption. Spatial resolution was characterized by imaging a USAF 1951 optical resolution target made of SU-8 photoresist. The spatial resolution of the AFM topography measurement was a few nanometers as expected, while the spatial resolution of the IR measurement was 24.4 μm using relatively coarse spectral resolution (25-125 cm(-1)). In addition to well-controlled samples demonstrating the spatial and spectral properties of the setup, we used the method to map engineered skin and three-dimensional cell culture samples. This research combines modest IR imaging capabilities with the exceptional topographical imaging of conventional AFM to provide advantages of both in a facile manner.
Nature Communications | 2016
Kwang Chon Kim; Joohwi Lee; Byung Kyu Kim; Won Young Choi; Hye Jung Chang; Sung Ok Won; Beomjin Kwon; Seong Keun Kim; Dow Bin Hyun; Hyun Jae Kim; Hyun Cheol Koo; Jung Hae Choi; Dong-Ik Kim; Jin Sang Kim; Seung Hyub Baek
Interfaces, such as grain boundaries in a solid material, are excellent regions to explore novel properties that emerge as the result of local symmetry-breaking. For instance, at the interface of a layered-chalcogenide material, the potential reconfiguration of the atoms at the boundaries can lead to a significant modification of the electronic properties because of their complex atomic bonding structure. Here, we report the experimental observation of an electron source at 60° twin boundaries in Bi2Te3, a representative layered-chalcogenide material. First-principles calculations reveal that the modification of the interatomic distance at the 60° twin boundary to accommodate structural misfits can alter the electronic structure of Bi2Te3. The change in the electronic structure generates occupied states within the original bandgap in a favourable condition to create carriers and enlarges the density-of-states near the conduction band minimum. The present work provides insight into the various transport behaviours of thermoelectrics and topological insulators.
Scientific Reports | 2016
Im Jun Roh; Yun Goo Lee; Min Su Kang; Jae Uk Lee; Seung Hyub Baek; Seong Keun Kim; Byeong Kwon Ju; Dow Bin Hyun; Jin Sang Kim; Beomjin Kwon
Accuracy of the Harman measurement largely depends on the heat transfer between the sample and its surroundings, so-called parasitic thermal effects (PTEs). Similar to the material evaluations, measuring thermoelectric modules (TEMs) is also affected by the PTEs especially when measuring under atmospheric condition. Here, we study the correction methods for the Harman measurements with systematically varied samples (both bulk materials and TEMs) at various conditions. Among several PTEs, the heat transfer via electric wires is critical. Thus, we estimate the thermal conductance of the electric wires, and correct the measured properties for a certain sample shape and measuring temperature. The PTEs are responsible for the underestimation of the TEM properties especially under atmospheric conditions (10–35%). This study will be useful to accurately characterize the thermoelectric properties of materials and modules.
Applied Physics Letters | 2014
Beomjin Kwon; Im Jun Roh; Seung Hyub Baek; Seong Keun Kim; Jin Sang Kim; Chong Yun Kang
We measure and model the dynamic temperature response of electrocaloric (EC) multilayer capacitors (MLCs) which have been recently highlighted as novel solid-state refrigerators. The MLC temperature responses depend on the operation voltage waveform, thus we consider three types of voltage waveforms, which include square, triangular, and trapezoidal. Further, to implement an effective refrigeration cycle, the waveform frequency and duty cycle should be carefully chosen. First, our model is fitted to the measurements to evaluate an effective EC power and thermal properties, and calculates an effective cooling power for an EC MLC. The prediction shows that for a MLC with a thermal relaxation time for cooling, trc, a square voltage waveform with a duty cycle of 0 < d ≤ 0.3 and a period of trc < P ≤ 1.4trc provides the maximum cooling power. This work will help to improve the implementing methods for EC refrigeration cycles.
Scientific Reports | 2016
Min Su Kang; Im Jun Roh; Yun Goo Lee; Seung Hyub Baek; Seong Keun Kim; Byeong Kwon Ju; Dow Bin Hyun; Jin Sang Kim; Beomjin Kwon
Although the Harman method evaluates the thermoelectric figure-of-merit in a rapid and simple fashion, the accuracy of this method is affected by several electrical and thermal extrinsic factors that have not been thoroughly investigated. Here, we study the relevant extrinsic effects and a correction scheme for them. A finite element model simulates the electrical potential and temperature fields of a sample, and enables the detailed analysis of electrical and thermal transport. The model predicts that the measurement strongly depends on the materials, sample geometries, and contact resistance of the electrodes. To verify the model, we measure the thermoelectric properties of Bi2-Te3 based alloys with systematically varied sample geometries and either with a point or a surface current source. By comparing the model and experimental data, we understand how the measurement conditions determine the extrinsic effects, and, furthermore, able to extract the intrinsic thermoelectric properties. A correction scheme is proposed to eliminate the associated extrinsic effects for an accurate evaluation. This work will help the Harman method be more consistent and accurate and contribute to the development of thermoelectric materials.