Bernabé Dorronsoro
University of Cádiz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernabé Dorronsoro.
IEEE Transactions on Evolutionary Computation | 2005
Enrique Alba; Bernabé Dorronsoro
This paper studies static and dynamic decentralized versions of the search model known as cellular genetic algorithm (cGA), in which individuals are located in a specific topology and interact only with their neighbors. Making changes in the shape of such topology or in the neighborhood may give birth to a high number of algorithmic variants. We perform these changes in a methodological way by tuning the concept of ratio. Since the relationship (ratio) between the topology and the neighborhood shape defines the search selection pressure, we propose to analyze in depth the influence of this ratio on the exploration/exploitation tradeoff. As we will see, it is difficult to decide which ratio is best suited for a given problem. Therefore, we introduce a preprogrammed change of this ratio during the evolution as a possible additional improvement that removes the need of specifying a single ratio. A later refinement will lead us to the first adaptive dynamic kind of cellular models to our knowledge. We conclude that these dynamic cGAs have the most desirable behavior among all the evaluated ones in terms of efficiency and accuracy; we validate our results on a set of seven different problems of considerable complexity in order to better sustain our conclusions.
IEEE Transactions on Evolutionary Computation | 2008
Antonio J. Nebro; Francisco Luna; Enrique Alba; Bernabé Dorronsoro; Juan José Durillo; Andreas Beham
We propose the use of a new algorithm to solve multiobjective optimization problems. Our proposal adapts the well-known scatter search template for single-objective optimization to the multiobjective domain. The result is a hybrid metaheuristic algorithm called Archive-Based hYbrid Scatter Search (AbYSS), which follows the scatter search structure but uses mutation and crossover operators from evolutionary algorithms. AbYSS incorporates typical concepts from the multiobjective field, such as Pareto dominance, density estimation, and an external archive to store the nondominated solutions. We evaluate AbYSS with a standard benchmark including both unconstrained and constrained problems, and it is compared with two state-of-the-art multiobjective optimizers, NSGA-II and SPEA2. The results obtained indicate that, according to the benchmark and parameter settings used, AbYSS outperforms the other two algorithms as regards the diversity of the solutions, and it obtains very competitive results according to the convergence to the true Pareto fronts and the hypervolume metric.
IEEE Transactions on Evolutionary Computation | 2011
Bernabé Dorronsoro; Pascal Bouvry
Differential evolution (DE) algorithms compose an efficient type of evolutionary algorithm (EA) for the global optimization domain. Although it is well known that the population structure has a major influence on the behavior of EAs, there are few works studying its effect in DE algorithms. In this paper, we propose and analyze several DE variants using different panmictic and decentralized population schemes. As it happens for other EAs, we demonstrate that the population scheme has a marked influence on the behavior of DE algorithms too. Additionally, a new operator for generating the mutant vector is proposed and compared versus a classical one on all the proposed population models. After that, a new heterogeneous decentralized DE algorithm combining the two studied operators in the best performing studied population structure has been designed and evaluated. In total, 13 new DE algorithms are presented and evaluated in this paper. Summarizing our results, all the studied algorithms are highly competitive compared to the state-of-the-art DE algorithms taken from the literature for most considered problems, and the best ones implement a decentralized population. With respect to the population structure, the proposed decentralized versions clearly provide a better performance compared to the panmictic ones. The new mutation operator demonstrates a faster convergence on most of the studied problems versus a classical operator taken from the DE literature. Finally, the new heterogeneous decentralized DE is shown to improve the previously obtained results, and outperform the compared state-of-the-art DEs.
Computer Communications | 2007
Enrique Alba; Bernabé Dorronsoro; Francisco Luna; Antonio J. Nebro; Pascal Bouvry; Luc Hogie
Mobile Ad Hoc Networks (MANETs) are composed of a set of communicating devices which are able to spontaneously interconnect without any pre-existing infrastructure. In such kind of networks, broadcasting becomes an operation of capital importance for the own existence and operation of the network. Optimizing a broadcasting strategy in MANETs is a multi-objective problem targeting three goals: reaching as many devices as possible, minimizing the network utilization, and reducing the duration time of the broadcasting process. In this paper, we study the fine-tuning of broadcasting strategies by using a cellular multi-objective genetic algorithm (cMOGA) which computes a Pareto front of solutions to empower a human designer with the ability of choosing the preferred configuration for the network. We define two formulations of the problem, one with three objectives and another one with two objectives plus a constraint. For our tests, a benchmark of three realistic environments for metropolitan MANETs has been defined. Our experiments using a complex and realistic MANET simulator reveal that cMOGA is a promising approach to solve the optimum broadcasting problem.
Journal of Mathematical Modelling and Algorithms | 2008
Fatos Xhafa; Enrique Alba; Bernabé Dorronsoro; Bernat Duran
Computational grids are an important emerging paradigm for large-scale distributed computing. As grid systems become more wide-spread, techniques for efficiently exploiting the large amount of grid computing resources become increasingly indispensable. A key aspect in order to benefit from these resources is the scheduling of jobs to grid resources. Due to the complex nature of grid systems, the design of efficient grid schedulers becomes challenging since such schedulers have to be able to optimize many conflicting criteria in very short periods of time. This problem has been tackled in the literature by several different metaheuristics, and our main focus in this work is to develop a new highly competitive technique with respect to the existing ones. For that, we exploit the capabilities of cellular memetic algorithms (cMAs), a kind of memetic algorithm with structured population, for obtaining efficient batch schedulers for grid systems, and the obtained results will be compared versus the state of the art. A careful design of the cMA methods and operators for the problem yielded to an efficient and robust implementation. Our experimental study, based on a known static benchmark for the problem, shows that this heuristic approach is able to deliver very high quality planning of jobs to grid nodes and thus it can be used to design efficient dynamic schedulers for real grid systems. Such dynamic schedulers can be obtained by running the cMA-based scheduler in batch mode for a very short time to schedule jobs arriving in the system since the last activation of the cMA scheduler.
international conference on evolutionary multi criterion optimization | 2007
Antonio J. Nebro; Juan José Durillo; Francisco Luna; Bernabé Dorronsoro; Enrique Alba
In this paper we study a number of issues related to the design of a cellular genetic algorithm (cGA) for multiobjective optimization. We take as an starting point an algorithm following the canonical cGA model, i.e., each individual interacts with those ones belonging to its neighborhood, so that a new individual is obtained using the typical selection, crossover, and mutation operators within this neighborhood. An external archive is used to store the non-dominated solutions found during the evolution process. With this basic model in mind, there are many different design issues that can be faced. Among them, we focus here on the synchronous/asynchronous feature of the cGA, the feedback of the search experience contained in the archive into the algorithm, and two different replacement strategies. We evaluate the resulting algorithms using a benchmark of problems and compare the best of them against two state-of-the-art genetic algorithms for multiobjective optimization. The obtained results indicate that the cGA model is a promising approach to solve this kind of problem.
Information Processing Letters | 2006
Enrique Alba; Bernabé Dorronsoro
The Vehicle Routing Problem (VRP) is a hard combinatorial problem with numerous industrial applications. Among the large number of extensions to the canonical VRP, we study the Capacitated VRP (CVRP), which is mainly characterized by using vehicles of the same capacity. A cellular Genetic Algorithm (cGA)--a kind of decentralized population based heuristic--is used for solving CVRP, improving several of the best existing results so far in the literature. Our study shows a high performance in terms of the quality of the solutions found and the number of function evaluations (effort).
grid computing | 2013
Sergio Nesmachnow; Bernabé Dorronsoro; Johnatan E. Pecero; Pascal Bouvry
We address a multicriteria non-preemptive energy-aware scheduling problem for computational Grid systems. This work introduces a new formulation of the scheduling problem for multicore heterogeneous computational Grid systems in which the minimization of the energy consumption, along with the makespan metric, is considered. We adopt a two-level model, in which a meta-broker agent (level 1) receives all user tasks and schedules them on the available resources, belonging to different local providers (level 2). The computing capacity and energy consumption of resources are taken from real multi-core processors from the main current vendors. Twenty novel list scheduling methods for the problem are proposed, and a comparative analysis of all of them over a large set of problem instances is presented. Additionally, a scalability study is performed in order to analyze the contribution of the best new bi-objective list scheduling heuristics when the problem dimension grows. We conclude after the experimental analysis that accurate trade-off schedules are computed by using the new proposed methods.
Cluster Computing | 2013
Frédéric Pinel; Bernabé Dorronsoro; Johnatan E. Pecero; Pascal Bouvry; Samee Ullah Khan
The sensitivity analysis of a Cellular Genetic Algorithm (CGA) with local search is used to design a new and faster heuristic for the problem of mapping independent tasks to a distributed system (such as a computer cluster or grid) in order to minimize makespan (the time when the last task finishes). The proposed heuristic improves the previously known Min-Min heuristic. Moreover, the heuristic finds mappings of similar quality to the original CGA but in a significantly reduced runtime (1,000 faster). The proposed heuristic is evaluated across twelve different classes of scheduling instances. In addition, a proof of the energy-efficiency of the algorithm is provided. This convergence study suggests how additional energy reduction can be achieved by inserting low power computing nodes to the distributed computer system. Simulation results show that this approach reduces both energy consumption and makespan.
international parallel and distributed processing symposium | 2007
Fatos Xhafa; Enrique Alba; Bernabé Dorronsoro
Computational grids are an important emerging paradigm for large-scale distributed computing. As grid systems become more wide-spread, techniques for efficiently exploiting the large amount of grid computing resources become increasingly indispensable. A key aspect in order to benefit from these resources is the scheduling of jobs to grid resources. Due to the complex nature of grid systems, the design of efficient grid schedulers becomes challenging since such schedulers have to be able to optimize many conflicting criteria in very short periods of time. In this work we exploit the capabilities of cellular memetic algorithms (cMAs) for obtaining efficient batch schedulers for grid systems. A careful design of the cMA methods and operators for the problem yielded to an efficient and robust implementation. Our experimental study, based on a known static benchmark for the problem, shows that this heuristic approach is able to deliver very high quality planning of jobs to grid nodes and thus it can be used to design efficient dynamic schedulers for real grid systems. Such dynamic schedulers can be obtained by running the cMA-based scheduler in batch mode for a very short time to schedule jobs arriving to the system since the last activation of the cMA scheduler.