Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernadett K. Szasz is active.

Publication


Featured researches published by Bernadett K. Szasz.


Biological Psychiatry | 2007

Direct Inhibitory Effect of Fluoxetine on N-Methyl-D-Aspartate Receptors in the Central Nervous System

Bernadett K. Szasz; Arpad Mike; Robert Karoly; Zoltan Gerevich; Peter Illes; E. Sylvester Vizi; Janos P. Kiss

BACKGROUND Data accumulated in the last decade indicate that N-methyl-D-aspartate (NMDA) receptors might be involved in the pathophysiology of depression and the mechanism of action of antidepressants, although a direct inhibitory effect has been reported only in connection with tricyclic compounds, which interact with a wide range of receptors. METHODS Using whole-cell patch-clamp recording in rat cortical cell cultures, we investigated whether the selective serotonin reuptake inhibitor fluoxetine, which has a much better adverse effect profile, has a direct effect on NMDA receptors, and we compared its action to that of the tricyclic desipramine. RESULTS Both desipramine (concentration that causes 50% inhibition (IC(50)) = 3.13 microM) and fluoxetine (IC(50) = 10.51 microM) inhibited NMDA-evoked currents with similar efficacy in the clinically relevant low micromolar concentration range. However, in contrast to desipramine, the inhibition by fluoxetine was not voltage-dependent, and fluoxetine partially preserved its ability to associate with NMDA receptor in the presence of Mg(2+), suggesting different binding sites for the two drugs. CONCLUSIONS The fact that different classes of antidepressants were found to be low-affinity NMDA antagonists suggests that direct inhibition of NMDA receptors may contribute to the clinical effects of antidepressants.


Brain Research Bulletin | 2006

Changes in cerebral neurotransmitters and metabolites induced by acute donepezil and memantine administrations: a microdialysis study.

E. Shearman; S. Rossi; Bernadett K. Szasz; Zsolt Juranyi; S. Fallon; N. Pomara; Henry Sershen; Abel Lajtha

Cholinesterase inhibitors including donepezil, rivastigmine, and galantamine and the N-methyl-D-aspartate (NMDA) antagonist, memantine are the medications currently approved for the treatment of Alzheimers disease (AD). In addition to their beneficial effects on cognitive and functional domains typically disrupted in AD, these agents have also been shown to slow down the emergence of behavioral and psychotic symptoms associated with this disease. However, the underlying mechanisms for these therapeutic effects remain poorly understood and could involve effects of these medications on non-cholinergic or non-glutamatergic neurotransmitter systems respectively. These considerations prompted us to initiate a series of investigations to examine the acute and chronic effects of donepezil (Aricept (+/-)-2,3-dihydro-5,6-dimethoxy-2-[[1-(phenylmethyl)-4-piperidinyl]methyl]-1H-inden-1-1 hydrochloride and memantine (1-amino-3,5-dimethyladamantane hydrochloride C12H21N.HCl)). The present study focuses on the acute effects of donepezil and memantine on brain extracellular levels of acetylcholine, dopamine, serotonin, norepinephrine and their metabolites. We assayed changes in the ventral and dorsal hippocampus and the prefrontal and medial temporal cortex by microdialysis. Memantine resulted in significant increases in extracellular dopamine (DA), norepinephrine (NE), and their metabolites, in the cortical regions, and in a reduction of DA in the hippocampus. Donepezil produced an increase in extracellular DA in the cortex and in the dorsal hippocampus. Norepinephrine increased in the cortex; with donepezil it increased in the dorsal hippocampus and the medial temporal cortex, and decreased in the ventral hippocampus. Interestingly both compounds decreased extracellular serotonin (5HT) levels. The metabolites of the neurotransmitters were increased in most areas. We also found an increase in extracellular acetylcholine (ACh) by memantine in the nucleus accumbens and the ventral tegmental area. Our results suggest both region and drug specific neurotransmitter effects of these agents as well as some similarities. We conclude that drugs influencing cognitive mechanisms induce changes in a number of neurotransmitters with the changes being both region and drug specific. Release and metabolism are altered and extracellular neurotransmitter levels can be increased or decreased by the drugs. Other studies are in progress to determine the pharmacological effects associated with chronic treatment with these compounds, which may be more pertinent to the clinical situation in which patients take these medications for months or years.


Molecular Pharmacology | 2006

The mechanism of activity-dependent sodium channel inhibition by the antidepressants fluoxetine and desipramine.

Nora Lenkey; Robert Karoly; Janos P. Kiss; Bernadett K. Szasz; E.S. Vizi; Arpad Mike

The effect of monoamine uptake inhibitor-type antidepressants on sodium channels of hippocampal neurons was investigated. Members of the tricyclic group of antidepressants are known to modify multiple targets, including sodium channels, whereas selective serotonin-reuptake inhibitors (SSRIs) are regarded as highly selective compounds, and their effect on sodium channels was not investigated in detail. In this study, a representative member of each group was chosen: the tricyclic antidepressant desipramine and the SSRI fluoxetine. The drugs were roughly equipotent use-dependent inhibitors of sodium channels, with IC50 values ∼100 μMat -150 mV holding potential, and ∼1 μMat -60 mV. We suggest that therapeutic concentrations of antidepressants affect neuronal information processing partly by direct, activity-dependent inhibition of sodium channels. As for the mechanism of inhibition, use-dependent inhibition by antidepressants was believed to be due to a preferential affinity to the fast-inactivated state. Using a voltage and perfusion protocol by which relative affinities to fast-versus slow-inactivated states could be assessed, we challenged this view and found that the affinity of both drugs to slowinactivated state(s) was higher. We propose a different mechanism of action for these antidepressants, in which slow rather than fast inactivation plays the dominant role. This mechanism is similar but not equivalent with the novel mechanism of usedependent sodium channel inhibition previously described by our group (Neuroscience 125:1019-1028, 2004; Neuroreport 14:1945-1949, 2003). Our results suggest that different drugs can produce use-dependent sodium channel inhibition by different mechanisms.


Neurochemistry International | 2012

GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine.

Janos P. Kiss; Bernadett K. Szasz; László Fodor; Arpad Mike; Nora Lenkey; Dalma Kurkó; József Nagy; E. Sylvester Vizi

Accumulating evidence has indicated the involvement of glutamatergic neurotransmission in the pathophysiology of excitotoxicity and in the mechanism of action of antidepressants. We have previously shown that tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine inhibit NMDA receptors (NMDARs) in the clinically relevant, low micromolar concentration range. As the different subtypes of NMDARs are markedly different in their physiological and pathological functions, our aim was to investigate whether the effect of antidepressants is subtype-specific. Using whole-cell patch-clamp recordings in rat cortical cell cultures, we studied the age-dependence of inhibition of NMDA-induced currents after treatment with desipramine and fluoxetine, as the expression profile of the NMDAR subtypes changes as a function of days in vitro. We also investigated the inhibitory effect of these antidepressants on NMDA-induced currents in HEK 293 cell lines that stably expressed rat recombinant NMDARs with GluN1a/GluN2A or GluN1a/GluN2B subunit compositions. The inhibitory effect of desipramine was not age-dependent, whereas fluoxetine displayed a continuously decreasing inhibitory profile, which was similar to the GluN1/GluN2B subtype-selective antagonist ifenprodil. In HEK 293 cells, desipramine equally inhibited NMDA currents in both cell lines, whereas fluoxetine showed an inhibitory effect only in cells that expressed the GluN1/GluN2B subtype. Our data show that fluoxetine is a selective inhibitor of GluN2B-containing NMDARs, whereas desipramine inhibits both GluN1/GluN2A and GluN1/GluN2B subtypes. As the clinical efficacy of these drugs is very similar, the putative NMDAR-associated therapeutic effect of antidepressants may be mediated only via inhibition of the GluN2B-containing subtype. The manifestation of the GluN1/GluN2B-selectivity of fluoxetine suggests the neuroprotective potential for this drug in both acute and chronic neurodegenerative disorders.


BMC Genomics | 2012

Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats.

Omar Abdul-Rahman; Maria Sasvari-Szekely; Ágota Vér; Klára Rosta; Bernadett K. Szasz; Eva Kereszturi; Gergely Keszler

BackgroundThere has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively.ResultsFollowing pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1), CD47 (Cluster of Differentiation 47) and the RET (Rearranged During Transfection) protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals.ConclusionsAccording to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes.


Neurochemistry International | 2009

Inhibitory effect of antidepressants on the NMDA-evoked [3H]noradrenaline release from rat hippocampal slices

Aliz Mayer; Bernadett K. Szasz; Janos P. Kiss

We have previously shown that monoamine uptake blocker-type antidepressants with different chemical structure and selectivity are able to inhibit neuronal nicotinic acetylcholine receptors (nAChRs) in concentrations observed during antidepressant treatment. The mechanism of action of these drugs is similar to that of mecamylamine, a channel blocker-type antagonist of nAChRs. Since mecamylamine has been shown to block also NMDA receptors, our aim was to investigate whether the monoamine uptake blockers may affect the function of these ionotropic glutamate receptors. We studied, therefore the effect of the two most potent nicotinic antagonist antidepressants, the tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine on the NMDA-induced [(3)H]noradrenaline ([(3)H]NA) release from rat hippocampal slices. The NMDA-induced hippocampal [(3)H]NA release was effectively blocked by the selective, non-competitive NMDA antagonist MK-801 (IC(50)=0.54 microM), indicating that the [(3)H]NA release was mediated through NMDA receptors. This response was also dose-dependently inhibited by desipramine (IC(50)=14.57 microM) and fluoxetine (IC(50)=41.06 microM). The Na(+)-channel blocker TTX equally inhibited both the electrical stimulation- and the NMDA-evoked [(3)H]NA release (the IC(50) was 55 nM and 66 nM, respectively), whereas the antidepressants inhibited only the NMDA-evoked response. These data suggest that the inhibitory effect of fluoxetine and desipramine on the NMDA-evoked [(3)H]NA release is exerted directly on NMDA receptors rather than indirectly on Na(+)-channels. Due to accumulation processes the concentration of desipramine and fluoxetine in the brain might be in the same range as the observed IC(50) values, thus our data indicate that monoamine uptake blocker-type antidepressants are able to influence the function of NMDA receptors during antidepressant treatment, and the inhibitory effect on NMDA receptors might contribute to the therapeutic effects of these drugs.


Neuropharmacology | 2005

Carrier-mediated release of monoamines induced by the nicotinic acetylcholine receptor agonist DMPP

Bernadett K. Szasz; Aliz Mayer; Gabriella Zsilla; Balázs Lendvai; E. Sylvester Vizi; Janos P. Kiss

We have previously shown that dimethylphenylpiperazinium (DMPP) increases the release of noradrenaline (NA) from rat hippocampal slices via two distinct mechanisms: a nicotinic acetylcholine receptor (nAChR)-mediated exocytosis and a carrier-mediated release induced by the reversal of NA transporters. Our aim was to investigate whether other monoaminergic systems are also affected by the multiple actions of DMPP. In our experiments DMPP dose-dependently increased the release of dopamine (DA) and serotonin (5-HT) from rat striatal and hippocampal slices, respectively. The dual effect was observed, however, only in case of DA at a lower DMPP concentration (30 microM), where the response was partly inhibited by mecamylamine, TTX and Ca2+-free medium (nAChR-mediated exocytosis) while the other part of the response was blocked only by the DA uptake inhibitor nomifensine (carrier-mediated release). In contrast, the DMPP-evoked 5-HT release and the DA release induced by high concentration DMPP was not inhibited by nicotinic antagonists, TTX and Ca2+-free medium but only by selective uptake inhibitors. In addition, DMPP dose-dependently inhibited the [3H]DA and [3H]5-HT uptake in striatal and hippocampal synaptosome preparation with an IC50 of 3.18 and 0.49 microM, respectively. Our data show that DMPP interacts with monoamine transporters and induces a substantial carrier-mediated release of DA and 5-HT, therefore caution is needed for the interpretation of data, when this drug is used as a nAChR agonist.


Neuroscience | 2007

Nicotinic acetylcholine receptor antagonistic property of the selective dopamine uptake inhibitor, GBR-12909 in rat hippocampal slices

Bernadett K. Szasz; E.S. Vizi; Janos P. Kiss

Previously we found that inhibitors of noradrenaline (NA) and/or 5-HT reuptake are able to inhibit neuronal nicotinic acetylcholine receptors (nAChRs) in the CNS most probably by a channel blocker-type mechanism. The aim of our study was to clarify whether selective dopamine uptake inhibitors also possess this property, therefore we investigated the effect of GBR-12909 on the nicotine-evoked release of [3H]NA from rat hippocampal slices. GBR-12909, similar to selective NA and 5-HT uptake blockers, inhibited the nicotine-evoked release with an IC50 of 2.32 microM. The ability of monoamine uptake blockers to inhibit nicotine-evoked [3H]NA release (IC50) and NA reuptake (Ki) showed no correlation, indicating that the NA uptake system is not involved in the inhibition of the response to nicotine. Previously we have shown in whole cell patch clamp experiments, that GBR-12909, depending on the stimulation pattern, inhibits Na+-currents with an IC50 in the 6-35 microM concentration range [Mike A, Karoly R, Vizi ES, Kiss JP (2003) Inhibitory effect of the DA uptake blocker GBR-12909 on sodium channels of hippocampal neurons. Neuroreport 14:1945-1949]. To study whether the inhibition of Na+-channels is involved in the action of GBR-12909 on the nicotine-evoked [(3)H]NA release, we compared the effect of GBR-12909 and the Na(+)-channel blocker tetrodotoxin (TTX) on the electrical stimulation- and nicotine-evoked response. TTX prevented the release of [3H]NA induced by both types of stimulation, whereas GBR-12909 inhibited only the nicotine-induced response, indicating that under our experimental conditions the target of GBR-12909 is not the Na+-channel. These data indicate that the selective DA uptake inhibitor GBR-12909 is able to inhibit nAChRs, that is, the nAChR antagonistic property of monoamine uptake inhibitors is independent of their selectivity. The fact that monoamine uptake inhibitors with different chemical structure and selectivity are able to inhibit nAChRs may reveal some common properties of nicotinic receptors and monoamine uptake carriers.


Planta Medica | 2008

Converging Effects of Ginkgo biloba Extract at the Level of Transmitter Release, NMDA and Sodium Currents and Dendritic Spikes

Bernadett K. Szasz; Nora Lenkey; Albert M. I. Barth; Arpad Mike; Zsolt Somogyvari; Orsolya Farkas; Balázs Lendvai

In this study, an attempt was made to integrate the effects of GINKGO BILOBA extract (GBE) in different experimental systems (IN VITRO cochlea, brain slice preparations and cortical cell culture) to elucidate whether these processes converge to promote neuroprotection or interfere with normal neural function. GBE increased the release of dopamine in the cochlea. NMDA-evoked currents were dose-dependently inhibited by rapid GBE application in cultured cortical cells. GBE moderately inhibited Na+ channels at depolarised holding potential in cortical cells. These inhibitory effects by GBE may sufficiently contribute to the prevention of excitotoxic damage in neurons. However, these channels also interact with memory formation at the cellular level. The lack of effect by GBE on dendritic spike initiation in neocortical layer 5 pyramidal neurons indicates that the integrative functions may remain intact during the inhibitory actions of GBE.


Brain Research Bulletin | 2014

The tricyclic antidepressant desipramine inhibited the neurotoxic, kainate-induced [Ca2+]i increases in CA1 pyramidal cells in acute hippocampal slices

István Koncz; Bernadett K. Szasz; Szilárd I. Szabó; Janos P. Kiss; Arpad Mike; Balázs Lendvai; E. Sylvester Vizi; Tibor Zelles

Kainate (KA), used for modelling neurodegenerative diseases, evokes excitotoxicity. However, the precise mechanism of KA-evoked [Ca(2+)]i increase is unexplored, especially in acute brain slice preparations. We used [Ca(2+)]i imaging and patch clamp electrophysiology to decipher the mechanism of KA-evoked [Ca(2+)]i rise and its inhibition by the tricyclic antidepressant desipramine (DMI) in CA1 pyramidal cells in rat hippocampal slices and in cultured hippocampal cells. The effect of KA was dose-dependent and relied totally on extracellular Ca(2+). The lack of effect of dl-2-amino-5-phosphonopentanoic acid (AP-5) and abolishment of the response by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) suggested the involvement of non-N-methyl-d-aspartate receptors (non-NMDARs). The predominant role of the Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in the initiation of the Ca(2+) response was supported by the inhibitory effect of the selective AMPAR antagonist GYKI 53655 and the ineffectiveness of 1-naphthyl acetylspermine (NASPM), an inhibitor of the Ca(2+)-permeable AMPARs. The voltage-gated Ca(2+) channels (VGCC), blocked by ω-Conotoxin MVIIC+nifedipine+NiCl2, contributed to the [Ca(2+)]i rise. VGCCs were also involved, similarly to AMPAR current, in the KA-evoked depolarisation. Inhibition of voltage-gated Na(+) channels (VGSCs; tetrodotoxin, TTX) did not affect the depolarisation of pyramidal cells but blocked the depolarisation-evoked action potential bursts and reduced the Ca(2+) response. The tricyclic antidepressant DMI inhibited the KA-evoked [Ca(2+)]i rise in a dose-dependent manner. It directly attenuated the AMPA-/KAR current, but its more potent inhibition on the Ca(2+) response supports additional effect on VGCCs, VGSCs and Na(+)/Ca(2+) exchangers. The multitarget action on decisive players of excitotoxicity holds out more promise in clinical therapy of neurodegenerative diseases.

Collaboration


Dive into the Bernadett K. Szasz's collaboration.

Top Co-Authors

Avatar

Janos P. Kiss

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Arpad Mike

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Balázs Lendvai

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Aliz Mayer

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. Sylvester Vizi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Robert Karoly

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tibor Zelles

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Nora Lenkey

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Albert M. I. Barth

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E.S. Vizi

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge