Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernadette Raffestin is active.

Publication


Featured researches published by Bernadette Raffestin.


Journal of Clinical Investigation | 2001

Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension

Saadia Eddahibi; Marc Humbert; Elie Fadel; Bernadette Raffestin; Michèle Darmon; Frédérique Capron; Gérald Simonneau; Philippe Dartevelle; Michel Hamon; Serge Adnot

Hyperplasia of pulmonary artery smooth muscle cells (PA-SMCs) is a hallmark pathological feature of primary pulmonary hypertension (PPH). Here we found that PA-SMCs from patients with PPH grow faster than PA-SMCs from controls when stimulated by serotonin or serum and that these effects are due to increased expression of the serotonin transporter (5-HTT), which mediates internalization of indoleamine. In the presence of 5-HTT inhibitors, the growth stimulatory effects of serum and serotonin were markedly reduced and the difference between growth of PA-SMCs from patients and controls was no longer observed. As compared with controls, the expression of 5-HTT was increased in cultured PA-SMCs as well as in platelets and lungs from patients with PPH where it predominated in the media of thickened pulmonary arteries and in onion-bulb lesions. The L-allelic variant of the 5HTT gene promoter, which is associated with 5-HTT overexpression and increased PA-SMC growth, was present in homozygous form in 65% of patients but in only 27% of controls. We conclude that 5-HTT activity plays a key role in the pathogenesis of PA-SMC proliferation in PPH and that a 5HTT polymorphism confers susceptibility to PPH.


Heart | 2005

Compliance with and effectiveness of adaptive servoventilation versus continuous positive airway pressure in the treatment of Cheyne-Stokes respiration in heart failure over a six month period.

Carole Philippe; Maria Stoica-Herman; Xavier Drouot; Bernadette Raffestin; Pierre Escourrou; Luc Hittinger; Pierre-Louis Michel; Sylvie Rouault; Marie-Pia d'Ortho

Objective: To compare compliance with and effectiveness of adaptive servoventilation (ASV) versus continuous positive airway pressure (CPAP) in patients with the central sleep apnoea syndrome (CSA) with Cheyne-Stokes respiration (CSR) and with congestive heart failure in terms of the apnoea–hypopnoea index (AHI), quality of life, and left ventricular ejection fraction (LVEF) over six months. Methods: 25 patients (age 28–80 years, New York Heart Association (NYHA) class II–IV) with stable congestive heart failure and CSA-CSR were randomly assigned to either CPAP or ASV. At inclusion, both groups were comparable for NYHA class, LVEF, medical treatment, body mass index, and CSA-CSR. Results: Both ASV and CPAP decreased the AHI but, noticeably, only ASV completely corrected CSA-CSR, with AHI below 10/h. At three months, compliance was comparable between ASV and CPAP; however, at six months compliance with CPAP was significantly less than with ASV. At six months, the improvement in quality of life was higher with ASV and only ASV induced a significant increase in LVEF. Conclusion: These results suggest that patients with CSA-CSR may receive greater benefit from treatment with ASV than with CPAP.


Journal of Clinical Investigation | 1991

Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia.

Serge Adnot; Bernadette Raffestin; Saadia Eddahibi; P Braquet; P E Chabrier

To determine whether exposure to chronic hypoxia and subsequent development of pulmonary hypertension induces alterations of endothelium-dependent relaxation in rat pulmonary vascular bed, we studied isolated lung preparations from rats exposed to either room air (controls) or hypoxia (H) during 1 wk (1W-H), 3 wk (3W-H), or 3W-H followed by 48 h recovery to room air (3WH + R). In lungs pretreated with meclofenamate (3 microM), the endothelium-dependent vasodilator responses to acetylcholine (10(-9)-10(-6) M) and ionophore A23187 (10(-9)-10(-7) M) were examined during conditions of increased tone by U46619 (50 pmol/min). Acetylcholine or A23187 produced dose-dependent vasodilation in control lungs, this response was reduced in group 1W-H (P less than 0.02), abolished in group 3W-H (P less than 0.001), and restored in group 3WH + R. In contrast, the endothelium-independent vasodilator agent sodium nitroprusside remained fully active in group 3W-H. The pressor response to 300 pM endothelin was greater in group 3W-H than in controls (6.8 +/- 0.5 mmHg vs. 1.6 +/- 0.2 mmHg, P less than 0.001) but was not potentiated by the endothelium-dependent relaxing factor (EDRF) antagonists: hydroquinone (10(-4) M); methylene blue (10(-4) M); and pyrogallol (3 x 10(-5) M) as it was in controls. It was similar to controls in group 3W-H + R. Our results demonstrate that hypoxia-induced pulmonary hypertension is associated with a loss of EDRF activity in pulmonary vessels, with a rapid recovery on return to a normoxic environment.


Journal of Clinical Investigation | 2000

Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene

Saadia Eddahibi; N. Hanoun; L. Lanfumey; K.P. Lesch; Bernadette Raffestin; Michel Hamon; Serge Adnot

Hypoxia is a well-recognized stimulus for pulmonary blood vessel remodeling and pulmonary hypertension development. One mechanism that may account for these effects is the direct action of hypoxia on the expression of specific genes involved in vascular smooth muscle cell (SMC) proliferation. Previous studies demonstrated that the serotonin (5-hydroxytryptamine; 5-HT) transporter (5-HTT) mediates the mitogenic activity of 5-HT in pulmonary vascular SMCs and is overexpressed during hypoxia. Thus, 5-HT-related mitogenic activity is increased during hypoxia. Here, we report that mice deficient for 5-HTT (5-HTT(-/-)) developed less hypoxic pulmonary hypertension and vascular remodeling than paired 5-HTT(+/+) controls. When maintained under normoxia, 5-HTT(-/-)-mutant mice had normal hemodynamic parameters, low blood 5-HT levels, deficient platelet 5-HT uptake, and unchanged blood levels of 5-hydroxyindoleacetic acid, a metabolite of 5-HT. After exposure to 10% O(2) for 2 or 5 weeks, the number and medial wall thickness of muscular pulmonary vessels were reduced in hypoxic 5-HTT(-/-) mice as compared with wild-type paired controls. Concomitantly, right ventricular systolic pressure was lower and right ventricle hypertrophy less marked in the mutant mice. This occurred despite potentiation of acute hypoxic pulmonary vasoconstriction in the 5-HTT(-/-) mice. These data further support a key role of 5-HTT in hypoxia-induced pulmonary vascular SMC proliferation and pulmonary hypertension.


Circulation Research | 1999

Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells: Relationship with the mitogenic action of serotonin

Saadia Eddahibi; Véronique Fabre; C. Boni; M. P. Martres; Bernadette Raffestin; Michel Hamon; Serge Adnot

-The increased delivery of serotonin (5-hydroxytryptamine, 5-HT) to the lung aggravates the development of hypoxia-induced pulmonary hypertension in rats, possibly through stimulation of the proliferation of pulmonary artery smooth muscle cells (PA-SMCs). In cultured rat PA-SMCs, 5-HT (10(-8) to 10(-6) mol/L) induced DNA synthesis and potentiated the mitogenic effect of platelet-derived growth factor-BB (10 ng/mL). This effect was dependent on the 5-HT transporter (5-HTT), since it was prevented by the 5-HTT inhibitors fluoxetine (10(-6) mol/L) and paroxetine (10(-7) mol/L), but it was unaltered by ketanserin (10(-6) mol/L), a 5-HT2A receptor antagonist. In PA-SMCs exposed to hypoxia, the levels of 5-HTT mRNA (measured by competitive reverse transcriptase-polymerase chain reaction) increased by 240% within 2 hours, followed by a 3-fold increase in the uptake of [3H]5-HT at 24 hours. Cotransfection of the cells with a construct of human 5-HTT promoter-luciferase gene reporter and of pCMV-beta-galactosidase gene allowed the demonstration that exposure of cells to hypoxia produced a 5.5-fold increase in luciferase activity, with no change in beta-galactosidase activity. The increased expression of 5-HTT in hypoxic cells was associated with a greater mitogenic response to 5-HT (10(-8) to 10(-6) mol/L) in the absence as well as in the presence of platelet-derived growth factor-BB. 5-HTT expression assessed by quantitative reverse transcriptase-polymerase chain reaction and in situ hybridization in the lungs was found to predominate in the media of pulmonary artery, in which a marked increase was noted in rats that had been exposed to hypoxia for 15 days. These data show that in vitro and in vivo exposure to hypoxia induces, via a transcriptional mechanism, 5-HTT expression in PA-SMCs, and that this effect contributes to the stimulatory action of 5-HT on PA-SMC proliferation. In vivo expression of 5-HTT by PA-SMC may play a key role in serotonin-mediated pulmonary vascular remodeling.


Circulation | 2005

Serotonin Transporter Inhibition Prevents and Reverses Monocrotaline-Induced Pulmonary Hypertension in Rats

Christophe Guignabert; Bernadette Raffestin; Rima Benferhat; William Raoul; Patricia Zadigue; Dominique Rideau; Michel Hamon; Serge Adnot; Saadia Eddahibi

Background—Progression of pulmonary hypertension (PH) is associated with increased lung expression of the serotonin transporter (5-HTT), which leads to hyperplasia of the pulmonary artery smooth muscle cells (PA-SMCs). Given the postulated causal relation between 5-HTT overexpression and PH, we herein investigated whether the highly selective 5-HTT inhibitor fluoxetine prevented and/or reversed PH induced by monocrotaline (MCT) in rats. Selective 5-HT1B/1D, 5-HT2A, and 5-HT2B receptor antagonists were used for comparative testing. Methods and Results—MCT injection (60 mg/kg SC) was followed by an early peak in lung 5-HTT expression on day 1, which preceded the onset of PH. Established PH on day 15 was associated with a sustained 5-HTT increase. Continued fluoxetine treatment completely prevented PA-SMC proliferation and PH development and also suppressed the late 5-HTT increase, without affecting the early peak. The 5-HT receptor antagonists did not affect PH. Fluoxetine (10 mg · kg−1 · d−1 PO) started 3 weeks after MCT injection completely reversed established PH, normalizing PA pressure and structure. MCT-induced PH was also associated with increased expression of various cytokines, but only interleukin-1&bgr; and monocyte chemotactic protein-1 increased at the early phase and stimulated 5-HTT expression by cultured PA-SMCs. Conclusion—Upregulation of lung 5-HTT induced by MCT appears necessary to initiate the development of pulmonary vascular remodeling, whereas a sustained increase in 5-HTT expression may underlie both the progression and the maintenance of MCT-induced PH. Complete reversal of established PH by fluoxetine provides a rationale for new therapeutic strategies in human PH.


Journal of Clinical Investigation | 2009

Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents.

Mohamed Izikki; Christophe Guignabert; Elie Fadel; Marc Humbert; Ly Tu; Patricia Zadigue; Philippe Dartevelle; Gérald Simonneau; Serge Adnot; Bernard Maitre; Bernadette Raffestin; Saadia Eddahibi

Pulmonary hypertension (PH) is a progressive, lethal lung disease characterized by pulmonary artery SMC (PA-SMC) hyperplasia leading to right-sided heart failure. Molecular events originating in pulmonary ECs (P-ECs) may contribute to the PA-SMC hyperplasia in PH. Thus, we exposed cultured human PA-SMC to medium conditioned by P-EC from patients with idiopathic PH (IPH) or controls and found that IPH P-EC-conditioned medium increased PA-SMC proliferation more than control P-EC medium. Levels of FGF2 were increased in the medium of IPH P-ECs over controls, while there was no detectable difference in TGF-beta1, PDGF-BB, or EGF levels. No difference in FGF2-induced proliferation or FGF receptor type 1 (FGFR1) mRNA levels was detected between IPH and control PA-SMCs. Knockdown of FGF2 in P-EC using siRNA reduced the PA-SMC growth-stimulating effects of IPH P-EC medium by 60% and control P-EC medium by 10%. In situ hybridization showed FGF2 overproduction predominantly in the remodeled vascular endothelium of lungs from patients with IPH. Repeated intravenous FGF2-siRNA administration abolished lung FGF2 production, both preventing and nearly reversing a rat model of PH. Similarly, pharmacological FGFR1 inhibition with SU5402 reversed established PH in the same model. Thus, endothelial FGF2 is overproduced in IPH and contributes to SMC hyperplasia in IPH, identifying FGF2 as a promising target for new treatments against PH.


Journal of Clinical Investigation | 1994

Continuous inhalation of nitric oxide protects against development of pulmonary hypertension in chronically hypoxic rats.

C Kouyoumdjian; Serge Adnot; Micheline Levame; Saadia Eddahibi; Hassan Bousbaa; Bernadette Raffestin

Exposure to hypoxia and subsequent development of pulmonary hypertension is associated with an impairment of the nitric oxide (NO) mediated response to endothelium-dependent vasodilators. Inhaled NO may reach resistive pulmonary vessels through an abluminal route. The aim of this study was to investigate if continuous inhalation of NO would attenuate the development of pulmonary hypertension in rats exposed to chronic hypoxia. In conscious rats previously exposed to 10% O2 for 3 wk, short-term inhalation of NO caused a dose-dependent decrease in pulmonary artery pressure (PAP) from 44 +/- 1 to 32 +/- 1 mmHg at 40 ppm with no changes in systemic arterial pressure, cardiac output, or heart rate. In normoxic rats, acute NO inhalation did not cause changes in PAP. In rats simultaneously exposed to 10% O2 and 10 ppm NO during 2 wk, right ventricular hypertrophy was less severe (P < 0.01), and the degree of muscularization of pulmonary vessels at both alveolar duct and alveolar wall levels was lower (P < 0.01) than in rats exposed to hypoxia alone. Tolerance to the pulmonary vasodilator effect of NO did not develop after prolonged inhalation. Brief discontinuation of NO after 2 wk of hypoxia plus NO caused a rapid increase in PAP. These data demonstrate that prolonged inhalation of low concentrations of NO induces sustained pulmonary vasodilation and reduces pulmonary vascular remodeling in response to chronic hypoxia.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Heart and lung VEGF mRNA expression in rats with monocrotaline- or hypoxia-induced pulmonary hypertension.

Chohreh Partovian; Serge Adnot; Saadia Eddahibi; Emmanuel Teiger; Micheline Levame; Patrick Dreyfus; Bernadette Raffestin; Christian Frelin

Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is upregulated during exposure to hypoxia. In this study, we analyzed heart and lung VEGF mRNA expression and examined pulmonary vascular remodeling as well as myocardial capillary density in two rat models of pulmonary hypertension involving exposure to chronic hypoxia (CH) and treatment with monocrotaline (MCT), respectively. The rats were studied after 0.5, 1, 3, 15, and 30 days of exposure to 10% O2 or 1, 6, and 30 days after a subcutaneous MCT injection (60 mg/kg). Both CH and MCT induced pulmonary hypertension and hypertrophy of the right ventricle (RV) with increased RV weight and atrial natriuretic peptide mRNA expression. VEGF mRNA expression as assessed by Northern blot analysis was potently induced after 12 h of hypoxia in both the right and left ventricles. After prolonged exposure to hypoxia, VEGF mRNA returned to baseline in the left ventricle (LV) but remained increased in the RV, where it peaked after 30 days. In MCT rats, VEGF mRNA was unchanged in the LV but decreased by 50% in the RV and by 90% in the lungs after 30 days. VEGF mRNA remained unchanged in the lungs from CH rats. Pulmonary vascular remodeling was more pronounced in MCT than in CH rats. The number of capillaries per RV myocyte was increased in rats exposed to 30 days of hypoxia, whereas it remained unchanged in MCT rats despite a similar degree of RV hypertrophy. Our results suggest that the sustained increase in VEGF expression in the hypertrophied RV during CH may account for the increased number of capillaries per myocyte. In contrast, reduced VEGF expression in the lungs and RV of MCT rats may aggravate pulmonary vascular remodeling and compromise RV myocardial perfusion.Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is upregulated during exposure to hypoxia. In this study, we analyzed heart and lung VEGF mRNA expression and examined pulmonary vascular remodeling as well as myocardial capillary density in two rat models of pulmonary hypertension involving exposure to chronic hypoxia (CH) and treatment with monocrotaline (MCT), respectively. The rats were studied after 0.5, 1, 3, 15, and 30 days of exposure to 10% O2 or 1, 6, and 30 days after a subcutaneous MCT injection (60 mg/kg). Both CH and MCT induced pulmonary hypertension and hypertrophy of the right ventricle (RV) with increased RV weight and atrial natriuretic peptide mRNA expression. VEGF mRNA expression as assessed by Northern blot analysis was potently induced after 12 h of hypoxia in both the right and left ventricles. After prolonged exposure to hypoxia, VEGF mRNA returned to baseline in the left ventricle (LV) but remained increased in the RV, where it peaked after 30 days. In MCT rats, VEGF mRNA was unchanged in the LV but decreased by 50% in the RV and by 90% in the lungs after 30 days. VEGF mRNA remained unchanged in the lungs from CH rats. Pulmonary vascular remodeling was more pronounced in MCT than in CH rats. The number of capillaries per RV myocyte was increased in rats exposed to 30 days of hypoxia, whereas it remained unchanged in MCT rats despite a similar degree of RV hypertrophy. Our results suggest that the sustained increase in VEGF expression in the hypertrophied RV during CH may account for the increased number of capillaries per myocyte. In contrast, reduced VEGF expression in the lungs and RV of MCT rats may aggravate pulmonary vascular remodeling and compromise RV myocardial perfusion.


Circulation Research | 2000

Inhibition of Matrix Metalloproteinases by Lung TIMP-1 Gene Transfer or Doxycycline Aggravates Pulmonary Hypertension in Rats

Antoine Vieillard-Baron; Eric Frisdal; Saadia Eddahibi; Isabelle Deprez; Andrew H. Baker; Andrew C. Newby; Patrick Berger; Micheline Levame; Bernadette Raffestin; Serge Adnot; Marie-Pia d’Ortho

Chronic hypoxic pulmonary hypertension (PH) results from persistent vasoconstriction, excess muscularization, and extracellular matrix remodeling of pulmonary arteries. The matrix metalloproteinases (MMPs) are a family of proteinases implicated in extracellular matrix turnover and hence in smooth muscle and endothelial cell migration and proliferation. Because MMP expression and activity are increased in PH, we designed the present study to investigate whether inhibition of lung MMPs in rats subjected to chronic hypoxia (CH) contributes to or protects against vascular remodeling and PH. To achieve lung MMP inhibition, rats exposed to 10% O2 for 15 days were treated with either doxycycline (20 mg/kg per day by gavage starting 2 days before and continuing throughout the CH period) or a single dose of recombinant adenovirus (Ad) for the human tissue inhibitors of metalloproteinases-1 (hTIMP-1) gene (Ad.hTIMP-1, 108 plaque-forming units given intratracheally 2 days before CH initiation). Control groups either received no treatment or were treated with an adenovirus containing no gene in the expression cassette (Ad.Null). Efficacy of hTIMP-1 gene transfer was assessed both by ELISA on bronchoalveolar lavages and by hTIMP-1 immunofluorescence on lung sections. MMP inhibition in lungs was evaluated by in situ zymography and gelatinolytic activity assessment using [3H]gelatin. Rats treated with either doxycycline or Ad.hTIMP-1 had higher pulmonary artery pressure and right heart ventricular hypertrophy more severe than their respective controls. Worsening of PH was associated with increased muscularization and periadventitial collagen accumulation in distal arteries. In conclusion, our study provides compelling evidence that MMPs play a pivotal role in protecting against pulmonary artery remodeling.

Collaboration


Dive into the Bernadette Raffestin's collaboration.

Top Co-Authors

Avatar

Marc Humbert

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Ly Tu

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Deprez

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

J. Paquereau

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge