Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard A. Hauser is active.

Publication


Featured researches published by Bernard A. Hauser.


Development | 2005

The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development

Sung Ok Park; Zhengui Zheng; David G. Oppenheimer; Bernard A. Hauser

The PRETTY FEW SEEDS2 gene encodes a homeodomain protein that regulates ovule development. In peptide alignments spanning the homeodomain and the WOX domain, PFS2 shared 95% amino acid identity with the PRESSED FLOWER and WUSCHEL proteins. In the pfs2-1 allele, the integuments display morphological abnormalities and 95% of the embryo sacs fail to develop properly, which results in reduced fecundity. PFS2 transcripts were most abundant in developing ovules, which accounts for the ovule phenotype in pfs2 mutants. In addition, PFS2 transcripts were present in developing primordia and differentiating organs, but, interestingly, they were absent during cell maturation. Ectopic PFS2 expression interfered with differentiation of primordia from meristems. For most plants, this resulted in fasciated stems, altered phyllotaxy, a cessation of primordia differentiation, or a combination of these. In the plants that made ovules, ectopic PFS2 expression blocked megaspore mother cell differentiation and often impeded polarized growth of the outer integument. PFS2 activity altered AGAMOUS expression, which accounts for some of the gain- and loss-of-function phenotypes. Based on analyses presented here, PFS2 affects either ovule patterning or differentiation.


International Journal of Plant Sciences | 2005

Sequence and Expression Studies of A‐, B‐, and E‐Class MADS‐Box Homologues in Eupomatia (Eupomatiaceae): Support for the Bracteate Origin of the Calyptra

Sangtae Kim; Jin Koh; Hong Ma; Yi Hu; Peter K. Endress; Bernard A. Hauser; Matyas Buzgo; Pamela S. Soltis; Douglas E. Soltis

Eupomatia (Magnoliales, Eupomatiaceae) has flowers that bear a calyptra, an unusual organ that encloses the floral bud. The structural homology and evolutionary derivation of the calyptra are unknown, although some have proposed that it is a bract, while others favor a derivation from the perianth. To address the evolutionary origin of the calyptra, we isolated, sequenced, and characterized the expression of A‐, B‐, and E‐class MADS‐box homologues from Eupomatia bennettii and a close relative, Magnolia grandiflora (Magnoliaceae). The expression patterns of organ identity genes in floral organs of Eupomatia and Magnolia were very similar. However, the expression patterns of these MADS‐box genes indicated that the ABC model is not strictly applicable to either Eupomatia or Magnolia. For example, A‐class homologues were expressed in carpels and leaves of both Eupomatia and Magnolia. In the calyptra, expression levels of B‐ and E‐class homologues were low and almost identical to those observed in leaf tissue. In contrast, high levels of expression for B‐ and E‐class homologues were observed in the stamens, staminodes, and carpels. These gene expression data agree with recent developmental data and the interpretation of the calyptra as a bract. We also report the presence of various forms of alternatively spliced mRNAs in the cDNA pool from floral organs, and the implications of these mRNAs are discussed.


Planta | 2006

Changes in mitochondrial membrane potential and accumulation of reactive oxygen species precede ultrastructural changes during ovule abortion

Bernard A. Hauser; Kelian Sun; David G. Oppenheimer; Tammy L. Sage

In many species, environmental stress reduces plant fertility. In Arabidopsis thaliana, a significant fraction of this reduction in plant fertility results from ovule abortion and embryo senescence. In this species, environmental conditions were identified that induced 94% of the developing ovules to either undergo stress-induced ovule abortion or embryo senescence (Sun et al. Plant Physiol 135:2358–2367, 2004). Following salt stress, physiological and anatomical changes were first detected in the female gametophyte of an aborting ovule. Two to four hours after a period of salt stress that induces most ovules to abort, the mitochondrial membrane potential dissipated. Subsequently, cells in the gametophyte accumulated reactive oxygen species, which are known to be molecules that promote programmed cell death (PCD). Because mitochondria often play an important role in PCD, these organelles were closely examined for changes in structure. Although the anatomy of mitochondria varied, reproducible changes in mitochondria structure were not observed. Nonetheless, other changes in ultrastructure were found. In some aborting gametophytes, concentric rings of endoplasmic reticulum were formed. In a fraction of the aborting ovules, cytoplasmic contents and organelles were invaginated into the vacuole. Even in cryofixed sections, many of these bodies appeared indistinct, which is consistent with the degradation of their contents.


New Phytologist | 2011

Functional characterization of Arabidopsis thaliana isopropylmalate dehydrogenases reveals their important roles in gametophyte development

Yan He; Liqun Chen; Yuan Zhou; Thomas P. Mawhinney; Bing Chen; Byung-Ho Kang; Bernard A. Hauser; Sixue Chen

• Isopropylmalate dehydrogenases (IPMDHs) catalyze the oxidative decarboxylation of 3-isopropylmalate (3-IPM) in leucine biosynthesis in microorganisms. The Arabidopsis thaliana genome contains three putative IPMDH genes. • IPMDH2 and IPMDH3 proteins exhibited significantly higher activity toward 3-IPM than IPMDH1, which is indicative of a pivotal role in leucine biosynthesis. Single mutants of IPMDH2 or IPMDH3 lacked a discernible phenotype. Genetic analysis showed that ipmdh2 ipmdh3 was lethal in male gametophytes and had reduced transmission through female gametophytes. The aborted pollen grains were small, abnormal in cellular structure, and arrested in germination. In addition, half of the double mutant embryo sacs exhibited slowed development. • The IPMDH2/ipmdh2 ipmdh3/ipmdh3 genotype exhibited abnormal vegetative phenotypes, suggesting haplo-insufficiency of IPMDH2 in the ipmdh3 background. This mutant and a triple mutant containing one allele of IPMDH2 or IPMDH3 had decreased leucine biosynthetic enzyme activities and lower free leucine concentrations. The latter mutant showed changes in glucosinolate profiles different from those in the ipmdh1 mutant. • The results demonstrate that IPMDH2 and IPMDH3 primarily function in leucine biosynthesis, are essential for pollen development and are needed for proper embryo sac development.


Planta | 2014

The APX4 locus regulates seed vigor and seedling growth in Arabidopsis thaliana

Ya-Ying Wang; Amanda G. Hecker; Bernard A. Hauser

The amino acid sequence of APX4 is similar to other ascorbate peroxidases (APXs), a group of proteins that protect plants from oxidative damage by transferring electrons from ascorbate to detoxify peroxides. In this study, we characterized two apx4 mutant alleles. Translational fusions with GFP indicated APX4 localizes to chloroplasts. Both apx4 mutant alleles formed chlorotic cotyledons with significantly reduced chlorophyll a, chlorophyll b and lutein. Given the homology of APX to ROS-scavenging proteins, this result is consistent with APX4 protecting seedling photosystems from oxidation. The growth of apx4 seedlings was stunted early in seedling development. In addition, APX4 altered seed quality by affecting seed coat formation. While apx4 seed development appeared normal, the seed coat was darker and more permeable than the wild type. In addition, accelerated aging tests showed that apx4 seeds were more sensitive to environmental stress than the wild-type seeds. If APX4 affects seed pigment biosynthesis or reduction, the seed coat color and permeability phenotypes are explained. apx4 mutants had cotyledon chlorosis, increased H2O2 accumulation, and reduced soluble APX activity in seedlings. These results indicate that APX4 is involved in the ROS-scavenging process in chloroplasts.


Planta | 2013

Emerging technologies for non-invasive quantification of physiological oxygen transport in plants

P. Chaturvedi; M. Taguchi; S. L. Burrs; Bernard A. Hauser; W.W. A.W. Salim; Jonathan C. Claussen; Eric S. McLamore

Oxygen plays a critical role in plant metabolism, stress response/signaling, and adaptation to environmental changes (Lambers and Colmer, Plant Soil 274:7–15, 2005; Pitzschke et al., Antioxid Redox Signal 8:1757–1764, 2006; Van Breusegem et al., Plant Sci 161:405–414, 2001). Reactive oxygen species (ROS), by-products of various metabolic pathways in which oxygen is a key molecule, are produced during adaptation responses to environmental stress. While much is known about plant adaptation to stress (e.g., detoxifying enzymes, antioxidant production), the link between ROS metabolism, O2 transport, and stress response mechanisms is unknown. Thus, non-invasive technologies for measuring O2 are critical for understanding the link between physiological O2 transport and ROS signaling. New non-invasive technologies allow real-time measurement of O2 at the single cell and even organelle levels. This review briefly summarizes currently available (i.e., mainstream) technologies for measuring O2 and then introduces emerging technologies for measuring O2. Advanced techniques that provide the ability to non-invasively (i.e., non-destructively) measure O2 are highlighted. In the near future, these non-invasive sensors will facilitate novel experimentation that will allow plant physiologists to ask new hypothesis-driven research questions aimed at improving our understanding of physiological O2 transport.


G3: Genes, Genomes, Genetics | 2016

Target Enrichment Improves Mapping of Complex Traits by Deep Sequencing

Jianjun Guo; Jue Fan; Bernard A. Hauser; Seung Y. Rhee

Complex traits such as crop performance and human diseases are controlled by multiple genetic loci, many of which have small effects and often go undetected by traditional quantitative trait locus (QTL) mapping. Recently, bulked segregant analysis with large F2 pools and genome-level markers (named extreme-QTL or X-QTL mapping) has been used to identify many QTL. To estimate parameters impacting QTL detection for X-QTL mapping, we simulated the effects of population size, marker density, and sequencing depth of markers on QTL detectability for traits with differing heritabilities. These simulations indicate that a high (>90%) chance of detecting QTL with at least 5% effect requires 5000× sequencing depth for a trait with heritability of 0.4−0.7. For most eukaryotic organisms, whole-genome sequencing at this depth is not economically feasible. Therefore, we tested and confirmed the feasibility of applying deep sequencing of target-enriched markers for X-QTL mapping. We used two traits in Arabidopsis thaliana with different heritabilities: seed size (H2 = 0.61) and seedling greening in response to salt (H2 = 0.94). We used a modified G test to identify QTL regions and developed a model-based statistical framework to resolve individual peaks by incorporating recombination rates. Multiple QTL were identified for both traits, including previously undiscovered QTL. We call our method target-enriched X-QTL (TEX-QTL) mapping; this mapping approach is not limited by the genome size or the availability of recombinant inbred populations and should be applicable to many organisms and traits.


Analytical Methods | 2017

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon–metal electrode

P. Chaturvedi; D. C. Vanegas; Bernard A. Hauser; J.S. Foster; Maria S. Sepúlveda; Eric S. McLamore

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge. Here, we report the development, application, and validation of a self referencing (i.e., oscillating) NO microelectrode for field studies of biological cells and tissues. The durable microelectrode is based on a hybrid nanomaterial composed of nanoceria, reduced graphene oxide and nanoplatinum and is intended for field use. One of the main focuses was to address the common pitfall of high overpotential through use of hydrophobic, and size/charge-selective materials in a thin film coated on top of the nanocatalyst sensor. The sensitivity (0.95 ± 0.03 pA nM−1), response time (1.1 ± 0.1 s), operating potential (+720 mV), and selectivity of the nanomaterial-modified microelectrode are similar to laboratory microelectrode designs, enabling studies of NO flux in field studies. NO efflux was first measured from chitosan and alginate polymers in abiotic studies, and a deterministic model used to determine the effective diffusion coefficient for each polymer composite. To demonstrate the practicality of the sensor, NO flux was quantified in three model organisms with known NO pathways, including: bacteria, plant, and an invertebrate animal. For each organism, an established hypothesis was validated based on NO flux measurement and the results confirm data collected using standard analytical techniques. The sensor can be used to expand our fundamental knowledge of NO transport by facilitating field experiments which are not possible with standard techniques.


Molecular Ecology Resources | 2018

Application of CRISPR/Cas9 to Tragopogon (Asteraceae), an evolutionary model for the study of polyploidy

Shengchen Shan; Evgeny V. Mavrodiev; Riqing Li; Zhengzhi Zhang; Bernard A. Hauser; Pamela S. Soltis; Douglas E. Soltis; Bing Yang

Tragopogon (Asteraceae) is an excellent natural system for studies of recent polyploidy. Development of an efficient CRISPR/Cas9‐based genome editing platform in Tragopogon will facilitate novel studies of the genetic consequences of polyploidy. Here, we report our initial results of developing CRISPR/Cas9 in Tragopogon. We have established a feasible tissue culture and transformation protocol for Tragopogon. Through protoplast transient assays, use of the TragCRISPR system (i.e. the CRISPR/Cas9 system adapted for Tragopogon) was capable of introducing site‐specific mutations in Tragopogon protoplasts. Agrobacterium‐mediated transformation with Cas9‐sgRNA constructs targeting the phytoene desaturase gene (TraPDS) was implemented in this model polyploid system. Sequencing of PCR amplicons from the target regions indicated simultaneous mutations of two alleles and four alleles of TraPDS in albino shoots from Tragopogon porrifolius (2x) and Tragopogon mirus (4x), respectively. The average proportions of successfully transformed calli with the albino phenotype were 87% and 78% in the diploid and polyploid, respectively. This appears to be the first demonstration of CRISPR/Cas9‐based genome editing in any naturally formed neopolyploid system. Although a more efficient tissue culture system should be developed in Tragopogon, application of a robust CRISPR/Cas9 system will permit unique studies of biased fractionation, the gene‐balance hypothesis and cytonuclear interactions in polyploids. In addition, the CRISPR/Cas9 platform enables investigations of those genes involved in phenotypic changes in polyploids and will also facilitate novel functional biology studies in Asteraceae. Our workflow provides a guide for applying CRISPR/Cas9 to other nongenetic model plant systems.


Proceedings of SPIE | 2013

A multiplexing fiber optic microsensor system for monitoring oxygen concentration in plants

P. Chaturvedi; Bernard A. Hauser; L H. Allen; K J. Boote; E. Karplus; Eric S. McLamore

The accurate and rapid measurement of physiological O2 transport is vital for understanding spatially and temporally dynamic metabolism and stress signalling in plant cells and tissues. Single channel luminescent O2- quenched optrodes have been available for use in laboratory and field experiments since the early 2000’s. However, to collect the large datasets needed to understand O2 transport in complex systems, many experiments require a multiple channel O2 sensor system. This research reports the development of a multiplexing fiber optic O2 microsensor system designed to conduct high temporal resolution experiments for field studies of plant physiology. The 10 channel system was demonstrated for measuring O2 concentration in developing soybean seeds (Glycine max L. Merr.) within a climate controlled greenhouse.

Collaboration


Dive into the Bernard A. Hauser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela S. Soltis

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelian Sun

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. H. Allen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Lingxiao Zhang

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge