Bernard Angers
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernard Angers.
Molecular Ecology | 2010
Bernard Angers; Emilie Castonguay; Rachel Massicotte
Organisms often respond to environmental changes by producing alternative phenotypes. Epigenetic processes such as DNA methylation may contribute to environmentally induced phenotypic variation by modifying gene expression. Changes in DNA methylation, unlike DNA mutations, can be influenced by the environment; they are stable at the time scale of an individual and present different levels of heritability. These characteristics make DNA methylation a potentially important molecular process to respond to environmental change. The aim of this review is to present the implications of DNA methylation on phenotypic variations driven by environmental changes. More specifically, we explore epigenetic concepts concerning phenotypic change in response to the environment and heritability of DNA methylation, namely the Baldwin effect and genetic accommodation. Before addressing this point, we report major differences in DNA methylation across taxa and the role of this modification in producing and maintaining environmentally induced phenotypic variation. We also present the different methods allowing the detection of methylation polymorphism. We believe this review will be helpful to molecular ecologists, in that it highlights the importance of epigenetic processes in ecological and evolutionary studies.
Epigenetics | 2011
Rachel Massicotte; Emma Whitelaw; Bernard Angers
Epigenetic processes (e.g., DNA methylation) have been proposed as potentially important evolutionary mechanisms. However, before drawing conclusions about their evolutionary relevance, we need to evaluate the independence of epigenetic variation from genetic variation, as well as the extent of methylation polymorphism in nature. We evaluated these in natural populations of a clonal fish, Chrosomus eos-neogaeus, for which genetically identical individuals may be found in distinct environments. A genomic survey confirms the genetic uniformity of individuals, whereas a substantial level of inter-individual variation results in DNA methylation. Survey of the methylation status of the CpG dinucleotides of a fragment of a retrotransposon confirmed a marked difference in epiallelic composition among tissues, as well as among individuals. This study provides further evidence of epigenetic variation in the absence of genetic variation and demonstrates that this process can be a source of random variation in natural populations.
The American Naturalist | 2011
Mathieu Chouteau; Bernard Angers
Selective predation of aposematic signals is expected to promote phenotypic uniformity. But while these signals may be uniform within a population, numerous species display impressive variations in warning signals among adjacent populations. Predators from different localities who learn to avoid distinct signals while performing intense selection on others are thus expected to maintain such a geographic organization. We tested this assumption by placing clay frog models, representing distinct color morphs of the Peruvian poison dart frog Ranitomeya imitator and a nonconspicuous frog, reciprocally between adjacent localities. In each locality, avian predators were able to discriminate between warning signals; the adjacent exotic morph experienced up to four times more attacks than the local one and two times more than the nonconspicuous phenotype. Moreover, predation attempts on the exotic morph quickly decreased to almost nil, suggesting rapid learning. This experiment offers direct evidence for the existence of different predator communities performing localized homogenizing selection on distinct aposematic signals.
Molecular Ecology | 2007
Bernard Angers; Isaac J. Schlosser
Phoxinus eos‐neogaeus unisexual hybrids (Cyprinidae, Pisces) are among the few vertebrate taxa known to reproduce clonally by gynogenesis. These taxa have a broad distribution in North America, mostly located in regions previously covered by the last Pleistocene ice sheet. To assess whether asexual hybrids dispersed from glacial refuges at the end of the Pleistocene or they originated from current hybridization events, genetic diversity of mitochondrial DNA (mtDNA) sequences and microsatellite loci was determined in populations from 16 different sites in the Mississippi–Missouri River (Nebraska and Montana), Rainy River–Hudson Bay (Minnesota), and St Lawrence River (Quebec) drainages. The maternal species (P. neogaeus) occurred in Minnesota and Nebraska but was absent from Montana sites and was restricted to only two of 11 lakes sampled in Quebec, although hybrids were present at all sites. The genetic survey revealed a total of 49 clones, originating from 14 hybridization events. Several of the lineages were characterized by mtDNA haplotypes not detected in the maternal ancestor. Lineages as well as clones frequently displayed a large geographical distribution at a regional scale. Dating of hybridization events suggested a relatively recent origin (< 50 000 years ago) from the Mississippi glacial refuge, even in regions not covered by the last Pleistocene glacier. Altogether, these results indicate P. eos‐neogaeus hybrids are not the result of current hybridization events, but display a pattern predicted by postglacial dispersal. Our findings have considerable implications for the nature of selection processes affecting the diversity of these asexual taxa and their coexistence with sexual ancestors.
BMC Evolutionary Biology | 2009
Daniel Cossíos; Mauro Lucherini; Manuel Ruiz-García; Bernard Angers
BackgroundWhile numerous studies revealed the major role of environmental changes of the Quaternary on the evolution of biodiversity, research on the influence of that period on current South-American fauna is scarce and have usually focused on lowland regions. In this study, the genetic structure of the pampas cat (Leopardus colocolo), a widely distributed felid, was determined and linked to ancient climate fluctuations on the Andean region.ResultsUsing both mitochondrial sequences and nuclear microsatellites, we inferred the existence of at least four groups of populations in the central Andes, while other three localities, with little sample sizes (n = 3), presented differences in only one of these markers. The distribution of these groups is correlated to latitude, with a central area characterized by admixture of numerous mitochondrial clades. This suggests colonization from at least three glacial refuges and a contact zone between 20 degrees and 23 degrees S following a glaciation event. The similar coalescence times of the mitochondrial haplotypes indicated that the major clades split approximately one million years ago, likely during the Pre-Pastonian glacial period (0.80 – 1.30 MYA), followed by a demographic expansion in every clade during the Aftonian interglacial period (0.45 – 0.62 MYA). Interestingly, this structure roughly corresponds to the current recognised distribution of morphological subspecies.ConclusionThe four groups of populations identified here must be considered different management units, and we propose the three localities showing differences in only mtDNA or ncDNA as provisional management units. The results revealed the influence of ancient climate fluctuations on the evolutionary history of this species. It is expected that the other species of land vertebrates with a smaller or similar mobility have been affected in the same manner by the glacial and interglacial periods in the central Andes
Molecular Ecology | 2006
M.-C. Gagnon; Bernard Angers
Phylogeographic studies have shed light on Pleistocene glaciations as a key factor in shaping present‐day genetic structure of many organisms. In formerly glaciated regions, the combined action of several factors such as refuges origin, physiological capacities and demographic parameters have contributed importantly to this process but specifically for each species. Therefore, a fine‐scale genetic structure is not expected to be similar for different species, unless it has been modulated by the action of a strong environmental pressure. The aim of this study is to investigate the effects of postglacial environment on the genetic structure of fishes. To achieve this objective, three fish species (northern pike, lake whitefish and yellow perch) commonly found in sympatry in Laurentian Shield lakes but displaying different ecological and physiological characteristics were analysed. The comparison of these unrelated species was performed to identify the factors determining the organization of their genetic structure. Populations of all species mostly originated from the Mississippian refuge. Low genetic differentiation was observed among populations but significant structures were detected for the three species. Despite marked differences among species, these structures presented common characteristics: a lack of congruence with drainage and a longitudinal organization. This suggested that the dispersion of species occurred independently, leading to a species‐specific structure. However, the settling of populations appeared to be mediated by a dynamic system of proglacial meltwater streams associated to the glacial Lake Ojibway‐Barlow, providing such similarities among species.
PLOS ONE | 2012
Mathieu Chouteau; Bernard Angers
Despite accumulating evidence for selection within natural systems, the importance of random genetic drift opposing Wrights and Fishers views of evolution continue to be a subject of controversy. The geographical diversification of aposematic signals appears to be a suitable system to assess the factors involved in the process of adaptation since both theories were independently proposed to explain this phenomenon. In the present study, the effects of drift and selection were assessed from population genetics and predation experiments on poison-dart frogs, Ranitomaya imitator, of Northern Peru. We specifically focus on the transient zone between two distinct aposematic signals. In contrast to regions where high predation maintains a monomorphic aposematic signal, the transient zones are characterized by lowered selection and a high phenotypic diversity. As a result, the diversification of phenotypes may occur via genetic drift without a significant loss of fitness. These new phenotypes may then colonize alternative habitats if successfully recognized and avoided by predators. This study highlights the interplay between drift and selection as determinant processes in the adaptive diversification of aposematic signals. Results are consistent with the expectations of the Wrights shifting balance theory and represent, to our knowledge, the first empirical demonstration of this highly contested theory in a natural system.
Molecular Ecology | 2009
J. Boizard; Pierre Magnan; Bernard Angers
Barriers along a watercourse and interconnections between drainage systems are dynamic landscape elements that are expected to play major roles in the dispersal and genetic structure of fish species. The objective of this study was to assess the role of these elements using creek chub (Semotilus atromaculatus) in the Mastigouche Wildlife Reserve (Québec, Canada) as model. Numerous impassable waterfalls and interconnections among drainage systems were inferred with geographic information systems and confirmed de visu. The analysis of 32 populations using seven nuclear microsatellites revealed the presence of three genetically distinct groups. Some groups were found upstream of impassable barriers and in adjacent portions of distinct drainage systems. Admixture among groups was also detected in some populations. Constraining phylogenetic procedures as well as Mantel correlation tests confirmed that the genetic structure is more likely to result from interconnections between the drainage systems than from the permanent network. This study indicates that landscape elements such as interconnections are of major importance for circumventing impassable barriers and colonizing lakes that are otherwise inaccessible. Such an approach could be relevant for determining the origins of fish species (i.e. native vs. introduced) in the context of conservation.
Genetics research international | 2012
Rachel Massicotte; Bernard Angers
This project aims at investigating the link between individual epigenetic variability (not related to genetic variability) and the variation of natural environmental conditions. We studied DNA methylation polymorphisms of individuals belonging to a single genetic lineage of the clonal diploid fish Chrosomus eos-neogaeus sampled in seven geographically distant lakes. In spite of a low number of informative fragments obtained from an MSAP analysis, individuals of a given lake are epigenetically similar, and methylation profiles allow the clustering of individuals in two distinct groups of populations among lakes. More importantly, we observed a significant pH variation that is consistent with the two epigenetic groups. It thus seems that the genotype studied has the potential to respond differentially via epigenetic modifications under variable environmental conditions, making epigenetic processes a relevant molecular mechanism contributing to phenotypic plasticity over variable environments in accordance with the GPG model.
Biology Letters | 2011
Mathieu Chouteau; Kyle Summers; Victor Morales; Bernard Angers
Whether the evolution of similar aposematic signals in different unpalatable species (i.e. Müllerian mimicry) is because of phenotypic convergence or advergence continues to puzzle scientists. The poison dart frog Ranitomeya imitator provides a rare example in support of the hypothesis of advergence: this species was believed to mimic numerous distinct model species because of high phenotypic variability and low genetic divergence among populations. In this study, we test the evidence in support of advergence using a population genetic framework in two localities where R. imitator is sympatric with different model species, Ranitomeya ventrimaculata and Ranitomeya variabilis. Genetic analyses revealed incomplete sorting of mitochondrial haplotypes between the two model species. These two species are also less genetically differentiated than R. imitator populations on the basis of both mitochondrial and nuclear DNA comparisons. The genetic similarity between the model species suggests that they have either diverged more recently than R. imitator populations or that they are still connected by gene flow and were misidentified as different species. An analysis of phenotypic variability indicates that the model species are as variable as R. imitator. These results do not support the hypothesis of advergence by R. imitator. Although we cannot rule out phenotypic advergence in the evolution of Müllerian mimicry, this study reopens the discussion regarding the direction of the evolution of mimicry in the R. imitator system.