Bernard Cazelles
École Normale Supérieure
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernard Cazelles.
Nature | 2008
Kyrre L. Kausrud; Atle Mysterud; Harald Steen; Jon Olav Vik; Eivind Østbye; Bernard Cazelles; Erik Framstad; Anne Maria Eikeset; Ivar Mysterud; Torstein Solhøy; Nils Chr. Stenseth
The population cycles of rodents at northern latitudes have puzzled people for centuries, and their impact is manifest throughout the alpine ecosystem. Climate change is known to be able to drive animal population dynamics between stable and cyclic phases, and has been suggested to cause the recent changes in cyclic dynamics of rodents and their predators. But although predator–rodent interactions are commonly argued to be the cause of the Fennoscandian rodent cycles, the role of the environment in the modulation of such dynamics is often poorly understood in natural systems. Hence, quantitative links between climate-driven processes and rodent dynamics have so far been lacking. Here we show that winter weather and snow conditions, together with density dependence in the net population growth rate, account for the observed population dynamics of the rodent community dominated by lemmings (Lemmus lemmus) in an alpine Norwegian core habitat between 1970 and 1997, and predict the observed absence of rodent peak years after 1994. These local rodent dynamics are coherent with alpine bird dynamics both locally and over all of southern Norway, consistent with the influence of large-scale fluctuations in winter conditions. The relationship between commonly available meteorological data and snow conditions indicates that changes in temperature and humidity, and thus conditions in the subnivean space, seem to markedly affect the dynamics of alpine rodents and their linked groups. The pattern of less regular rodent peaks, and corresponding changes in the overall dynamics of the alpine ecosystem, thus seems likely to prevail over a growing area under projected climate change.
Journal of the Royal Society Interface | 2007
Bernard Cazelles; Mario Chavez; Guillaume Constantin de Magny; Jean-François Guégan; Simon Hales
In the current context of global infectious disease risks, a better understanding of the dynamics of major epidemics is urgently needed. Time-series analysis has appeared as an interesting approach to explore the dynamics of numerous diseases. Classical time-series methods can only be used for stationary time-series (in which the statistical properties do not vary with time). However, epidemiological time-series are typically noisy, complex and strongly non-stationary. Given this specific nature, wavelet analysis appears particularly attractive because it is well suited to the analysis of non-stationary signals. Here, we review the basic properties of the wavelet approach as an appropriate and elegant method for time-series analysis in epidemiological studies. The wavelet decomposition offers several advantages that are discussed in this paper based on epidemiological examples. In particular, the wavelet approach permits analysis of transient relationships between two signals and is especially suitable for gradual change in force by exogenous variables.
PLOS Medicine | 2005
Bernard Cazelles; Mario Chavez; Anthony J. McMichael; Simon Hales
Background Several factors, including environmental and climatic factors, influence the transmission of vector-borne diseases. Nevertheless, the identification and relative importance of climatic factors for vector-borne diseases remain controversial. Dengue is the worlds most important viral vector-borne disease, and the controversy about climatic effects also applies in this case. Here we address the role of climate variability in shaping the interannual pattern of dengue epidemics. Methods and Findings We have analysed monthly data for Thailand from 1983 to 1997 using wavelet approaches that can describe nonstationary phenomena and that also allow the quantification of nonstationary associations between time series. We report a strong association between monthly dengue incidence in Thailand and the dynamics of El Niño for the 2–3-y periodic mode. This association is nonstationary, seen only from 1986 to 1992, and appears to have a major influence on the synchrony of dengue epidemics in Thailand. Conclusion The underlying mechanism for the synchronisation of dengue epidemics may resemble that of a pacemaker, in which intrinsic disease dynamics interact with climate variations driven by El Niño to propagate travelling waves of infection. When association with El Niño is strong in the 2–3-y periodic mode, one observes high synchrony of dengue epidemics over Thailand. When this association is absent, the seasonal dynamics become dominant and the synchrony initiated in Bangkok collapses.
Journal of Clinical Epidemiology | 1994
Dominique Laurier; Nguyen Phong Chau; Bernard Cazelles; Patrick Segond
We adapt a recent model from the Framingham study (Circulation 1991; 83: 356-362) to predict CHD in France for both sexes over a large age range. Calculations were based on data from the French PCV-METRA study. In France, the Paris Prospective Study model could predict CHD but only for men aged 43-53 years. Applied to men 43-53 years from the PCV-METRA, the Framingham model estimated a 5-year CHD risk (4%) lower than the risk reported in the Framingham sample, but significantly higher than the risk estimated by the French model (2%). Differences in estimated CHD risk between the Framingham and the PCV-METRA samples were explained for only 30% by adjustment on major CHD risk factors (mainly HDL-cholesterol and tobacco). Modifying the intercept in the Framingham model, agreement with estimated risk by the French model was improved from 29 to 80%. By an appropriate change of the intercept, the Framingham model might be used to estimate CHD risk in other populations.
Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain) | 2005
Stephanie Jenouvrier; Henri Weimerskirch; Christophe Barbraud; Young-Hyang Park; Bernard Cazelles
Ecosystems and populations are known to be influenced not only by long-term climatic trends, but also by other short-term climatic modes, such as interannual and decadal-scale variabilities. Because interactions between climatic forcing, biotic and abiotic components of ecosystems are subtle and complex, analysis of long-term series of both biological and physical factors is essential to understanding these interactions. Here, we apply a wavelet analysis simultaneously to long-term datasets on the environment and on the populations and breeding success of three Antarctic seabirds (southern fulmar, snow petrel, emperor penguin) breeding in Terre Adélie, to study the effects of climate fluctuations on Antarctic marine ecosystems. We show that over the past 40 years, populations and demographic parameters of the three species fluctuate with a periodicity of 3–5 years that was also detected in sea-ice extent and the Southern Oscillation Index. Although the major periodicity of these interannual fluctuations is not common to different species and environmental variables, their cyclic characteristics reveal a significant change since 1980. Moreover, sliding-correlation analysis highlighted the relationships between environmental variables and the demography of the three species, with important change of correlation occurring between the end of the 1970s and the beginning of the 1980s. These results suggest that a regime shift has probably occurred during this period, significantly affecting the Antarctic ecosystem, but with contrasted effects on the three species.
Proceedings of the Royal Society of London B: Biological Sciences | 2010
Zhibin Zhang; Huidong Tian; Bernard Cazelles; Kyrre L. Kausrud; Achim Bräuning; Fang Guo; Nils Chr. Stenseth
Recent studies have linked climatic and social instabilities in ancient China; the underlying causal mechanisms have, however, often not been quantitatively assessed. Here, using historical records and palaeoclimatic reconstructions during AD 10–1900, we demonstrate that war frequency, price of rice, locust plague, drought frequency, flood frequency and temperature in China show two predominant periodic bands around 160 and 320 years where they interact significantly with each other. Temperature cooling shows direct positive association with the frequency of external aggression war to the Chinese dynasties mostly from the northern pastoral nomadic societies, and indirect positive association with the frequency of internal war within the Chinese dynasties through drought and locust plagues. The collapses of the agricultural dynasties of the Han, Tang, Song and Ming are more closely associated with low temperature. Our study suggests that food production during the last two millennia has been more unstable during cooler periods, resulting in more social conflicts owing to rebellions within the dynasties or/and southward aggressions from northern pastoral nomadic societies in ancient China.
The American Naturalist | 2004
Ilya Klvana; Dominique Berteaux; Bernard Cazelles
Using North American porcupine (Erethizon dorsatum) feeding scars on trees as an index of past porcupine abundance, we have found that porcupine populations have fluctuated regularly over the past 130 years in the Bas St. Laurent region of eastern Quebec, with superimposed periodicities of 11 and 22 years. Coherency and phase analyses showed that this porcupine population cycle has closely followed the 11‐ and 22‐year solar activity cycles. Fluctuations in local precipitation and temperature were also cyclic and closely related to both the solar cycle and the porcupine cycle. Our results suggest that the solar cycle indirectly sets the rhythm of population fluctuations of the most abundant vertebrate herbivore in the ecosystem we studied. We hypothesize that the solar cycle has sufficiently important effects on the climate along the southern shore of the St. Lawrence estuary to locally influence terrestrial ecosystem functioning. This constitutes strong evidence for the possibility of a causal link between solar variability and terrestrial ecology at the decadal timescale and local spatial scale, which confirms results obtained at greater temporal and spatial scales.
BMC Infectious Diseases | 2011
Gerardo Chowell; Bernard Cazelles; Hélène Broutin; César V. Munayco
BackgroundDengue fever is a mosquito-borne disease that affects between 50 and 100 million people each year. Increasing our understanding of the heterogeneous transmission patterns of dengue at different spatial scales could have considerable public health value by guiding intervention strategies.MethodsBased on the weekly number of dengue cases in Perú by province, we investigated the association between dengue incidence during the period 1994-2008 and demographic and climate factors across geographic regions of the country.ResultsOur findings support the presence of significant differences in the timing of dengue epidemics between jungle and coastal regions, with differences significantly associated with the timing of the seasonal cycle of mean temperature.ConclusionsDengue is highly persistent in jungle areas of Perú where epidemics peak most frequently around March when rainfall is abundant. Differences in the timing of dengue epidemics in jungle and coastal regions are significantly associated with the seasonal temperature cycle. Our results suggest that dengue is frequently imported into coastal regions through infective sparks from endemic jungle areas and/or cities of other neighboring endemic countries, where propitious environmental conditions promote year-round mosquito breeding sites. If jungle endemic areas are responsible for multiple dengue introductions into coastal areas, our findings suggest that curtailing the transmission of dengue in these most persistent areas could lead to significant reductions in dengue incidence in coastal areas where dengue incidence typically reaches low levels during the dry season.
Emerging Infectious Diseases | 2013
Nguyen Thanh Vu; Bernard Cazelles; Maciej F. Boni; Khoa T. D. Thai; Maia A. Rabaa; Luong Chan Quang; Cameron P. Simmons; Tran Ngoc Huu; Katherine L. Anders
An improved understanding of heterogeneities in dengue virus transmission might provide insights into biological and ecologic drivers and facilitate predictions of the magnitude, timing, and location of future dengue epidemics. To investigate dengue dynamics in urban Ho Chi Minh City and neighboring rural provinces in Vietnam, we analyzed a 10-year monthly time series of dengue surveillance data from southern Vietnam. The per capita incidence of dengue was lower in Ho Chi Minh City than in most rural provinces; annual epidemics occurred 1–3 months later in Ho Chi Minh City than elsewhere. The timing and the magnitude of annual epidemics were significantly more correlated in nearby districts than in remote districts, suggesting that local biological and ecologic drivers operate at a scale of 50–100 km. Dengue incidence during the dry season accounted for 63% of variability in epidemic magnitude. These findings can aid the targeting of vector-control interventions and the planning for dengue vaccine implementation.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Huidong Tian; Leif Christian Stige; Bernard Cazelles; Kyrre L. Kausrud; Rune Svarverud; Nils Chr. Stenseth; Zhibin Zhang
It is becoming increasingly clear that global warming is taking place; however, its long-term effects on biological populations are largely unknown due to lack of long-term data. Here, we reconstructed a 1,910-y-long time series of outbreaks of Oriental migratory locusts (Locusta migratoria manilensis) in China, on the basis of information extracted from >8,000 historical documents. First by analyzing the most recent period with the best data quality using generalized additive models, we found statistically significant associations between the reconstructed locust abundance and indexes of precipitation and temperature at both annual (A.D. 1512–1911) and decadal (A.D. 1000–1900) scales: There were more locusts under dry and cold conditions and when locust abundance was high in the preceding year or decade. Second, by exploring locust–environment correlations using a 200-y moving window, we tested whether these associations also hold further back in time. The locust–precipitation correlation was found to hold at least as far back as to A.D. 500, supporting the robustness of this link as well as the quality of both reconstructions. The locust–temperature correlation was weaker and less consistent, which may reflect this link being indirect and thus more easily moderated by other factors. We anticipate that further analysis of this unique time series now available to the scientific community will continue to provide insights into biological consequences of climate change in the years to come.