Bernard Dacorogna
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernard Dacorogna.
Annales De L Institut Henri Poincare-analyse Non Lineaire | 1990
Bernard Dacorogna; Jürgen Moser
Abstract Let Ω ⊂ ℝn a bounded open set and f > 0 in Ω ¯ satisfying ∫ Ω f ( x ) d x = meas Ω . We study existence and regularity of diffeomorphisms u : Ω ¯ → Ω ¯ such that { det ∇ u ( x ) = f ( x ) , x ∈ Ω u ( x ) = x , x ∈ ∂ Ω .
Acta Mathematica | 1997
Bernard Dacorogna; Paolo Marcellini
Keywords: Dirichlet problem ; Hamilton-Jacobi equation ; existence ; of solutions Reference CAA-ARTICLE-1997-002doi:10.1007/BF02392708View record in Web of Science Record created on 2008-11-25, modified on 2017-05-12
Archive | 2004
Bernard Dacorogna
Introduction Preliminaries Classical Methods Direct Methods: Existence Direct Methods: Regularity Minimal Surfaces Isoperimetric Inequality Solutions to the Exercises Bibliography Index
Archive for Rational Mechanics and Analysis | 1992
Jean Jacques Alibert; Bernard Dacorogna
We study the different notions of convexity for the function fγ(ξ) = |ξ|2 (|ξ|2 − 2γ det ξ) where ξ ε ℝ2×2, introduced by Dacorogna & Marcellini. We show that fγ is convex, polyconvex, quasiconvex, rank-one convex, if and only if ¦γ¦≦ 2/3 √2, 1, 1+ɛ (for some ɛ>0), 2/√3, respectively.
Archive for Rational Mechanics and Analysis | 1995
Bernard Dacorogna; Paolo Marcellini
Keywords: quasiconvexity ; existence of minimizers Reference CAA-ARTICLE-1995-002doi:10.1007/BF00380915 Record created on 2008-11-25, modified on 2017-05-12
Archive for Rational Mechanics and Analysis | 1981
Bernard Dacorogna
Keywords: relaxed problem ; lower convex envelope ; gas ; equilibrium ; Van der Waals equation Reference CAA-ARTICLE-1981-001doi:10.1007/BF00280643View record in Web of Science Record created on 2008-11-25, modified on 2017-05-12
Archive | 2012
Gyula Csató; Bernard Dacorogna; Olivier Kneuss
Introduction.- Part I Exterior and Differential Forms.- Exterior Forms and the Notion of Divisibility.- Differential Forms.- Dimension Reduction.- Part II Hodge-Morrey Decomposition and Poincare Lemma.- An Identity Involving Exterior Derivatives and Gaffney Inequality.- The Hodge-Morrey Decomposition.- First-Order Elliptic Systems of Cauchy-Riemann Type.- Poincare Lemma.- The Equation div u = f.- Part III The Case k = n.- The Case f x g > 0.- The Case Without Sign Hypothesis on f.- Part IV The Case 0 <= k <= n-1.- General Considerations on the Flow Method.- The Cases k = 0 and k = 1.- The Case k = 2.- The Case 3 <= k <= n-1.- Part V Holder Spaces.- Holder Continuous Functions.- Part VI Appendix.- Necessary Conditions.- An Abstract Fixed Point Theorem.- Degree Theory.- References.- Further Reading.- Notations.- Index.
Archive | 2008
Luigi Ambrosio; Luis A. Caffarelli; Michael G. Crandall; Lawrence C. Evans; Nicola Fusco; Bernard Dacorogna; Paolo Marcellini
Note: With a historical overview by Elvira Mascolo. Reference CAA-BOOK-2008-007 Record created on 2008-11-25, modified on 2017-05-12
Annales De L Institut Henri Poincare-analyse Non Lineaire | 1992
Bernard Dacorogna; Wilfrid Gangbo; N. Subía
Resume Soient α I = α I ( p , q ) = min { ‖ u ′ ‖ L p ‖ u ‖ L q | u ∈ W 1 , p ( − 1 , 1 ) \ { 0 } , u ( − 1 ) = u ( 1 ) , ∫ − 1 1 u | u | q − 2 = 0 } α II = α II ( p , q ) = min { ‖ u ′ ‖ L p ‖ u ‖ L q | u ∈ W 1 , p ( − 1 , 1 ) \ { 0 } , u ( − 1 ) = u ( 1 ) , ∫ − 1 1 u = 0 } . On calcule explicitement αI, et on montre que pour q ≦ 2p, αI = αII, mais pour q suffisamment grand αII
Proceedings of the Royal Society of Edinburgh: Section A Mathematics | 1990
Bernard Dacorogna; J. Douchet; Wilfrid Gangbo; J. Rappaz
Keywords: Sobolev space ; quasiconvexity ; rank one convexity Reference CAA-ARTICLE-1990-004 Record created on 2008-11-25, modified on 2017-05-12