Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Dacorogna is active.

Publication


Featured researches published by Bernard Dacorogna.


Annales De L Institut Henri Poincare-analyse Non Lineaire | 1990

On a partial differential equation involving the Jacobian determinant

Bernard Dacorogna; Jürgen Moser

Abstract Let Ω ⊂ ℝn a bounded open set and f > 0 in Ω ¯ satisfying ∫ Ω f ( x ) d x = meas Ω . We study existence and regularity of diffeomorphisms u : Ω ¯ → Ω ¯ such that { det ∇ u ( x ) = f ( x ) , x ∈ Ω u ( x ) = x , x ∈ ∂ Ω .


Acta Mathematica | 1997

General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases

Bernard Dacorogna; Paolo Marcellini

Keywords: Dirichlet problem ; Hamilton-Jacobi equation ; existence ; of solutions Reference CAA-ARTICLE-1997-002doi:10.1007/BF02392708View record in Web of Science Record created on 2008-11-25, modified on 2017-05-12


Archive | 2004

Introduction to the calculus of variations

Bernard Dacorogna

Introduction Preliminaries Classical Methods Direct Methods: Existence Direct Methods: Regularity Minimal Surfaces Isoperimetric Inequality Solutions to the Exercises Bibliography Index


Archive for Rational Mechanics and Analysis | 1992

An example of a quasiconvex function that is not polyconvex in two dimensions

Jean Jacques Alibert; Bernard Dacorogna

We study the different notions of convexity for the function fγ(ξ) = |ξ|2 (|ξ|2 − 2γ det ξ) where ξ ε ℝ2×2, introduced by Dacorogna & Marcellini. We show that fγ is convex, polyconvex, quasiconvex, rank-one convex, if and only if ¦γ¦≦ 2/3 √2, 1, 1+ɛ (for some ɛ>0), 2/√3, respectively.


Archive for Rational Mechanics and Analysis | 1995

Existence of minimizers for non-quasiconvex integrals

Bernard Dacorogna; Paolo Marcellini

Keywords: quasiconvexity ; existence of minimizers Reference CAA-ARTICLE-1995-002doi:10.1007/BF00380915 Record created on 2008-11-25, modified on 2017-05-12


Archive for Rational Mechanics and Analysis | 1981

A relaxation theorem and its application to the equilibrium of gases

Bernard Dacorogna

Keywords: relaxed problem ; lower convex envelope ; gas ; equilibrium ; Van der Waals equation Reference CAA-ARTICLE-1981-001doi:10.1007/BF00280643View record in Web of Science Record created on 2008-11-25, modified on 2017-05-12


Archive | 2012

The Pullback Equation for Differential Forms

Gyula Csató; Bernard Dacorogna; Olivier Kneuss

Introduction.- Part I Exterior and Differential Forms.- Exterior Forms and the Notion of Divisibility.- Differential Forms.- Dimension Reduction.- Part II Hodge-Morrey Decomposition and Poincare Lemma.- An Identity Involving Exterior Derivatives and Gaffney Inequality.- The Hodge-Morrey Decomposition.- First-Order Elliptic Systems of Cauchy-Riemann Type.- Poincare Lemma.- The Equation div u = f.- Part III The Case k = n.- The Case f x g > 0.- The Case Without Sign Hypothesis on f.- Part IV The Case 0 <= k <= n-1.- General Considerations on the Flow Method.- The Cases k = 0 and k = 1.- The Case k = 2.- The Case 3 <= k <= n-1.- Part V Holder Spaces.- Holder Continuous Functions.- Part VI Appendix.- Necessary Conditions.- An Abstract Fixed Point Theorem.- Degree Theory.- References.- Further Reading.- Notations.- Index.


Archive | 2008

Calculus of Variations and Nonlinear Partial Differential Equations

Luigi Ambrosio; Luis A. Caffarelli; Michael G. Crandall; Lawrence C. Evans; Nicola Fusco; Bernard Dacorogna; Paolo Marcellini

Note: With a historical overview by Elvira Mascolo. Reference CAA-BOOK-2008-007 Record created on 2008-11-25, modified on 2017-05-12


Annales De L Institut Henri Poincare-analyse Non Lineaire | 1992

Sur une généralisation de l’inégalité de Wirtinger

Bernard Dacorogna; Wilfrid Gangbo; N. Subía

Resume Soient α I = α I ( p , q ) = min { ‖ u ′ ‖ L p ‖ u ‖ L q | u ∈ W 1 , p ( − 1 , 1 ) \ { 0 } , u ( − 1 ) = u ( 1 ) , ∫ − 1 1 u | u | q − 2 = 0 } α II = α II ( p , q ) = min { ‖ u ′ ‖ L p ‖ u ‖ L q | u ∈ W 1 , p ( − 1 , 1 ) \ { 0 } , u ( − 1 ) = u ( 1 ) , ∫ − 1 1 u = 0 } . On calcule explicitement αI, et on montre que pour q ≦ 2p, αI = αII, mais pour q suffisamment grand αII


Proceedings of the Royal Society of Edinburgh: Section A Mathematics | 1990

Some examples of rank one convex functions in dimension two

Bernard Dacorogna; J. Douchet; Wilfrid Gangbo; J. Rappaz

Keywords: Sobolev space ; quasiconvexity ; rank one convexity Reference CAA-ARTICLE-1990-004 Record created on 2008-11-25, modified on 2017-05-12

Collaboration


Dive into the Bernard Dacorogna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Kneuss

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Fonseca

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Wilfrid Gangbo

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Chiara Tanteri

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saugata Bandyopadhyay

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Nicola Fusco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Pierre Maréchal

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge