Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Dennielou is active.

Publication


Featured researches published by Bernard Dennielou.


Marine Geology | 2003

Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth

Alexis Khripounoff; Annick Vangriesheim; Nathalie Babonneau; Philippe Crassous; Bernard Dennielou; Bruno Savoye

A large turbidity current was detected in the Zaire submarine valley at 4000 m water depth. Current meters, turbidimeter and sediment trap deployed on a mooring located in the channel axis, although they were damaged, recorded the signature of a very high energy event. An average velocity of more than 121 cm s−1 was measured 150 m above the channel floor. Coarse sand and plant debris were collected at 40 m height. The turbidity current clearly overflowed the edges of the valley as demonstrated by the large quantity of turbiditic material (464 mg organic carbon m−2 d−1) found in the sediment trap moored 13 km south from the channel axis.


Science | 2012

Intensifying Weathering and Land Use in Iron Age Central Africa

Germain Bayon; Bernard Dennielou; Joel Etoubleau; Emmanuel Ponzevera; Samuel Toucanne; Sylvain Bermell

A Price of Civilization Large expanses of rainforests in parts of Central Africa were abruptly replaced by savannas around 3000 years ago, presumably because of climate change. However, that succession occurred at a time of expansion by Bantu tribes, from near the border of present-day Cameroon and Nigeria to the south and east, in a migration that brought with it agriculture and iron-smelting technologies. Bayon et al. (p. 1219, published online 9 February; see the Perspective by Dupont) analyzed the nearby marine sedimentary record and found that chemical weathering in Central Africa also increased markedly at this time. This increase in weathering could have been caused by forest clearing by the Bantu to create arable land and to fuel their smelters, rather than climate change alone. Savannas abruptly replaced rainforests around 3000 years ago on account of both climate and human land-use changes. About 3000 years ago, a major vegetation change occurred in Central Africa, when rainforest trees were abruptly replaced by savannas. Up to this point, the consensus of the scientific community has been that the forest disturbance was caused by climate change. We show here that chemical weathering in Central Africa, reconstructed from geochemical analyses of a marine sediment core, intensified abruptly at the same period, departing substantially from the long-term weathering fluctuations related to the Late Quaternary climate. Evidence that this weathering event was also contemporaneous with the migration of Bantu-speaking farmers across Central Africa suggests that human land-use intensification at that time had already made a major impact on the rainforest.


Marine Geology | 2002

Terrigenous fluxes at the Celtic margin during the last glacial cycle

Gérard Auffret; Sébastien Zaragosi; Bernard Dennielou; Elsa Cortijo; David Van Rooij; Francis E. Grousset; Claude Pujol; Frédérique Eynaud; Martin J. Siegert

The sedimentary sections of three cores from the Celtic margin provide high-resolution records of the terrigenous fluxes during the last glacial cycle. A total of 21 14 C AMS dates allow us to define age models with a resolution better than 100 yr during critical periods such as Heinrich events 1 and 2. Maximum sedimentary fluxes occurred at the Meriadzek Terrace site during the Last Glacial Maximum (LGM). Detailed X-ray imagery of core MD95-2002 from the Meriadzek Terrace shows no sedimentary structures suggestive of either deposition from high-density turbidity currents or significant erosion. Two paroxysmal terrigenous flux episodes have been identified. The first occurred after the deposition of Heinrich event 2 Canadian ice-rafted debris (IRD) and includes IRD from European sources. We suggest that the second represents an episode of deposition from turbid plumes, which precedes IRD deposition associated with Heinrich event 1. At the end of marine isotopic stage 2 (MIS 2) and the beginning of MIS 1 the highest fluxes are recorded on the Whittard Ridge where they correspond to deposition from turbidity current overflows. Canadian icebergs have rafted debris at the Celtic margin during Heinrich events 1, 2, 4 and 5. The highresolution records of Heinrich events 1 and 2 show that in both cases the arrival of the Canadian icebergs was preceded by a European ice rafting precursor event, which took place about 1^1.5 kyr before. Two rafting episodes of European IRD also occurred immediately after Heinrich event 2 and just before Heinrich event 1. The terrigenous fluxes recorded in core MD95-2002 during the LGM are the highest reported at hemipelagic sites from the northwestern European margin. The magnitude of the Canadian IRD fluxes at Meriadzek Terrace is similar to those from oceanic sites. = 2002 Elsevier Science B.V. All rights reserved.


Geochemistry Geophysics Geosystems | 2008

The 100‐ka and rapid sea level changes recorded by prograding shelf sand bodies in the Gulf of Lions (western Mediterranean Sea)

Maria-Angela Bassetti; Serge Berné; Gwenael Jouet; M Taviani; Bernard Dennielou; José-Abel Flores; Arnaud Gaillot; R Gelfort; Sara Lafuerza; Nabil Sultan

Thick forced regressive units on the wide continental shelf of the Gulf of Lions (western Mediterranean) recorded the composite effect of sea level changes during the Quaternary. They are mostly composed of coastal siliciclastic and bioclastic wedges showing clinoform geometry. These deposits have been intensively explored through high-resolution seismic investigations, but only recently it was possible to ground truth seismic interpretations, based on a long (100 m) borehole that crossed the succession and recovered a large part of the mainly sandy deposits (similar to 84% recovery). A multiproxy analysis of the sedimentary succession shows that (1) the stratal architecture of the shelf margin is defined by major bounding surfaces that are polygenic erosion surfaces associated with coarse-grained material incorporating abundant and diverse shells, including cold-water fauna (presently absent from the Mediterranean Sea). Between each surface, coarsening upward units with steep (up to 5 degrees) foresets are made of massive (more than 20 m thick) sands with possible swaley and hummocky cross-stratification, passing seaward to sands with muddy intervals and, further offshore, alternating highly boiturbated sands and silts. Each prograding wedge corresponds to a forced-regressive shoreface (or delta front/prodelta), deposited during the overall sea level falls occurring at (relatively slow) interglacial/glacial transition and therefore represents the record of 100 ka cyclicity. Higher-frequency Milankovitch cyclicities are also probably represented by distinct shoreface/delta front wedges; (2) detailed examination of the architecture and chronostratigraphy of the most recent sequence shows that minor bounding surfaces, corresponding to abrupt shallowing of sedimentary facies, separate downward stepping parasequences within the last 100 ka sequence...


Journal of Geophysical Research | 2014

Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution

Nabil Sultan; Gerhard Bohrmann; Livio Ruffine; Thomas Pape; Vincent Riboulot; Jean-Louis Colliat; A. De Prunelé; Bernard Dennielou; Sebastien Garziglia; Tobias Himmler; Tania Marsset; C.A. Peters; Abdulkarim Rabiu; Jiangong Wei

In previous works, it has been suggested that dissolution of gas hydrate can be responsible for pockmark formation and evolution in deep water Nigeria. It was shown that those pockmarks which are at different stages of maturation are characterized by a common internal architecture associated to gas hydrate dynamics. New results obtained by drilling into gas hydrate-bearing sediments with the MeBo seafloor drill rig in concert with geotechnical in situ measurements and pore water analyses indicate that pockmark formation and evolution in the study area are mainly controlled by rapid hydrate growth opposed to slow hydrate dissolution. On one hand, positive temperature anomalies, free gas trapped in shallow microfractures near the seafloor and coexistence of free gas and gas hydrate indicate rapid hydrate growth. On the other hand, slow hydrate dissolution is evident by low methane concentrations and almost constant sulfate values 2 m above the Gas Hydrate Occurrence Zone.


Geochemistry Geophysics Geosystems | 2008

Climatic cycles as expressed in sediments of the PROMESS1 borehole PRAD1‐2, central Adriatic, for the last 370 ka: 1. Integrated stratigraphy

Andrea Piva; Alessandra Asioli; Ralph R. Schneider; Fabio Trincardi; Nils Andersen; Elena Colmenero-Hidalgo; Bernard Dennielou; José-Abel Flores; Luigi Vigliotti

[1] A multiproxy integrated chronological framework, based on oxygen and carbon stable isotope stratigraphy, biostratigraphy (foraminifera and nannoplankton bioevents and foraminifer assemblage-based climate cyclicity), magnetostratigraphy, sapropel stratigraphy, and (14)C AMS radiometric dates, has been achieved for borehole PRAD1-2, collected in 185.5 m water depth in the central Adriatic. This work was carried out within the European Community project Profiles across Mediterranean Sedimentary Systems (PROMESS1). The 71.2 m long borehole spans a time interval between late MIS 11 and MIS 1 (the last 370 ka), showing a chronological resolution of 500 and 250 years per cm during interglacial and glacial intervals, respectively. At present, this record is the most expanded and continuous marine record available for the Adriatic Basin. Several orbital cycles can be recognized in the PRAD1-2 record: the 100 ka glacial-interglacial fluctuations and the 23 ka precession-related cycles, which in turn control the deposition of sapropel layers. An integrated analysis of short-term oscillations within the Last Glaciation interval (MIS 4-MIS 2) allowed the identification of the Adriatic signature of Dansgaard-Oeschger events, showing the potential to achieve a more refined chronostratigraphic framework for the top part of the PRAD1-2 record. Finally, the age model obtained by this study allowed the chronological integration of the main foraminifera bioevents detected in the borehole as well as of the volcanoclastic layers present in the upper part of the record. Despite its proximal location, PRAD1-2 presents a continuous record and shows the potential to be consistently correlated both with deep-sea and continental records in the Mediterranean region and beyond.


Geochemistry Geophysics Geosystems | 2011

The provenance of sediments in the Gulf of Lions, western Mediterranean Sea

Sidonie Révillon; Gwenael Jouet; Germain Bayon; Marina Rabineau; Bernard Dennielou; Christophe Hémond; Serge Berné

In this study, we undertook a reconnaissance study of sediments provenance in the Gulf of Lions focusing over the last 16 ka. We used geochemical and isotopic tracers to determine the source of sediments and give insight into the weathering conditions prevailing. Sediments samples were selected both onshore and offshore from the western, eastern, and central part of the Gulf of Lions. We analyzed bulk sediments, coarse and fine silt, and clay fractions. Elemental and Nd isotope compositions appeared to differ from one grain size fraction to another one. These are interpreted in terms of zircon addition in the coarse silt fraction for the elemental concentrations and variable sources influences for the Nd isotope compositions. Our results indicate that sediments in the Gulf of Lions mainly originated from the Rhone River watershed although a contribution of Saharan dust is seen in one sample. Influence of Pyrenean small rivers is minor in these samples. Some Sr isotope compositions shifts are interpreted as reflecting variable amounts of chemical weathering that are consistent with published paleoclimatic reconstructions.


Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule A-sciences De La Terre Et Des Planetes | 2000

Surconsolidation apparente et pression osmotique dans un sédiment marin

Nabil Sultan; Pierre Cochonat; Bernard Dennielou; Jean-Francois Bourillet; Bruno Savoye; Jean-Louis Colliat

This paper concerns the study of the over-consolidation state of a marine sediment extracted from the continental slope in the Gulf of Guinea. Special attention was devoted to the physicochemical phenomena. The study was carried out 1) at a microscopic level using the theory of the diffuse double layer [6, 8, 12] and 2) at a macroscopic level using an elastoplastic model considering the suction as a stress state variable [1]. These models have provided a physical explanation as well as an adequate description of the phenomenon of over-consolidation.


Archive | 2012

Geochemical Dynamics of the Natural-Gas Hydrate System in the Sea of Marmara, Offshore Turkey

Livio Ruffine; Olivia Fandiño; Joel Etoubleau; Sandrine Chéron; Jean-Pierre Donval; Yoan Germain; Emmanuel Ponzevera; Vivien Guyader; Bernard Dennielou; Giuseppe Etiope; Luca Gasperini; Bortoluzzi Giovanni; Pierre Henry; Céline Grall; Çagatay M. Namik; Charlou Jean-Luc; Géli Louis

Natural-gas hydrate systems are solid-state light-hydrocarbon accumulations which are encountered in the permafrost and the continental margins. They are stable under highpressure and low-temperature conditions and represent the major hydrocarbon volume on earth (Kvenvolden, 1988). Gas hydrates consist of a polycrystalline structure where a light hydrocarbon is trapped within a water lattice. The nature of the hydrocarbons is strongly related to their origin which is either microbial (also called biogenic) or thermogenic. Microbial gas-hydrate systems contain hydrocarbons produced by bacteria and archaea. There are primarily methane with a very small amount of ethane and eventually propane (Max, 2003). Others non-hydrocarbon compounds like hydrogen sulphur and carbon dioxide are also present. In the case of microbial gases, the hydrates are formed at or near the gas production area. Owing to the very high-methane content, these hydrates are commonly called methane-hydrate systems.


Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule A-sciences De La Terre Et Des Planetes | 1999

Contrôle exercé par la dorsale médio-Atlantique et le Gulf Stream sur la sédimentation quaternaire sur le plateau des Açores

Bernard Dennielou; Gérard Auffret; An Boelaert; Thomas Richter; T. Garlan; René Kerbra

The Azores Plateau is characterized by very low sedimentary fluxes. These consist of pelagic oozes slightly diluted by volcanogenic material. Sedimentary processes are controlled by (1) current activity: during at least the last three glacial periods the Gulf Stream has winnowed fine particles at depth shallower than 1 500 m, (2) the sea-bottom morphology: Mid-Atlantic ridge ponds act as sediment traps. The lateral flux can represent up to 92 % of the infill.

Collaboration


Dive into the Bernard Dennielou's collaboration.

Top Co-Authors

Avatar

Serge Berné

University of Perpignan

View shared research outputs
Top Co-Authors

Avatar

Laurence Droz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge