Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard E. Pfeil is active.

Publication


Featured researches published by Bernard E. Pfeil.


The Plant Cell | 2006

Caught Red-Handed: Rc Encodes a Basic Helix-Loop-Helix Protein Conditioning Red Pericarp in Rice

Megan Sweeney; Michael J. Thomson; Bernard E. Pfeil; Susan R. McCouch

Rc is a domestication-related gene required for red pericarp in rice (Oryza sativa). The red grain color is ubiquitous among the wild ancestors of O. sativa, in which it is closely associated with seed shattering and dormancy. Rc encodes a basic helix-loop-helix (bHLH) protein that was fine-mapped to an 18.5-kb region on rice chromosome 7 using a cross between Oryza rufipogon (red pericarp) and O. sativa cv Jefferson (white pericarp). Sequencing of the alleles from both mapping parents as well as from two independent genetic stocks of Rc revealed that the dominant red allele differed from the recessive white allele by a 14-bp deletion within exon 6 that knocked out the bHLH domain of the protein. A premature stop codon was identified in the second mutant stock that had a light red pericarp. RT-PCR experiments confirmed that the Rc gene was expressed in both red- and white-grained rice but that a shortened transcript was present in white varieties. Phylogenetic analysis, supported by comparative mapping in rice and maize (Zea mays), showed that Rc, a positive regulator of proanthocyanidin, is orthologous with INTENSIFIER1, a negative regulator of anthocyanin production in maize, and is not in the same clade as rice bHLH anthocyanin regulators.


Systematic Biology | 2005

Placing Paleopolyploidy in Relation to Taxon Divergence: A Phylogenetic Analysis in Legumes Using 39 Gene Families

Bernard E. Pfeil; Jessica A. Schlueter; R. C. Shoemaker; Jeff J. Doyle

Young polyploid events are easily diagnosed by various methods, but older polyploid events become increasingly difficult to identify as chromosomal rearrangements, tandem gene or partial chromosome duplications, changes in substitution rates among duplicated genes, pseudogenization or locus loss, and interlocus interactions complicate the means of inferring past genetic events. Genomic data have provided valuable information about the polyploid history of numerous species, but on their own fail to show whether related species, each with a polyploid past, share a particular polyploid event. A phylogenetic approach provides a powerful method to determine this but many processes may mislead investigators. These processes can affect individual gene trees, but most likely will not affect all genes, and almost certainly will not affect all genes in the same way. Thus, a multigene approach, which combines the large-scale aspect of genomics with the resolution of phylogenetics, has the power to overcome these difficulties and allow us to infer genomic events further into the past than would otherwise be possible. Previous work using synonymous distances among gene pairs within species has shown evidence for large-scale duplications in the legumes Glycine max and Medicago truncatula. We present a case study using 39 gene families, each with three or four members in G. max and the putative orthologues in M. truncatula, rooted using Arabidopsis thaliana. We tested whether the gene duplications in these legumes occurred separately in each lineage after their divergence (Hypothesis 1), or whether they share a round of gene duplications (Hypothesis 2). Many more gene family topologies supported Hypothesis 2 over Hypothesis 1 (11 and 2, respectively), even after synonymous distance analysis revealed that some topologies were providing misleading results. Only ca. 33% of genes examined support either hypothesis, which strongly suggests that single gene family approaches may be insufficient when studying ancient events with nuclear DNA. Our results suggest that G. max and M. truncatula, along with approximately 7000 other legume species from the same clade, share an ancient round of gene duplications, either due to polyploidy or to some other process.


American Journal of Botany | 2009

A molecular phylogeny of the orange subfamily(Rutaceae: Aurantioideae) using nine cpDNA sequences

Randall J. Bayer; David J. Mabberley; Cynthia C. Morton; Cathy H. Miller; Ish K. Sharma; Bernard E. Pfeil; Sarah Rich; Roberta Hitchcock; Steve Sykes

The breeding of new, high-quality citrus cultivars depends on dependable information about the relationships of taxa within the tribe Citreae; therefore, it is important to have a well-supported phylogeny of the relationships between species not only to advance breeding strategies, but also to advance conservation strategies for the wild taxa. The recent history of the systematics of Citrus (Rutaceae: Aurantioideae) and its allies, in the context of Rutaceae taxonomy as a whole, is reviewed. The most recent classification is tested using nine cpDNA sequence regions in representatives of all genera of the subfam. Aurantioideae (save Limnocitrus) and numerous species and hybrids referred to Citrus s.l. Aurantioideae are confirmed as monophyletic. Within Aurantioideae, tribe Clauseneae are not monophyletic unless Murraya s.s. and Merrillia are removed to Aurantieae. Within tribe Aurantieae, the three traditionally recognized subtribes are not monophyletic. Triphasiinae is not monophyletic unless Oxanthera is returned to Citrus (Citrinae). Balsamocitrinae is polyphyletic. Feroniella, traditionally considered allied closely to Limonia (=Feronia), is shown to be nested in Citrus. The proposed congenericity of Severinia and Atalantia is confirmed. The most recent circumscription of Citrus is strongly supported by this analysis, with hybrids appearing with their putative maternal parents. The genus was resolved into two clades, one comprising wild species from New Guinea, Australia, and New Caledonia (formerly Clymenia, Eremocitrus, Microcitrus, Oxanthera), but surprisingly also Citrus medica, traditionally believed to be native in India. The second clade is largely from the Asian mainland (including species formerly referred to Fortunella and Poncirus).


Plant Physiology | 2008

Differential Accumulation of Retroelements and Diversification of NB-LRR Disease Resistance Genes in Duplicated Regions following Polyploidy in the Ancestor of Soybean

Roger W. Innes; Carine Ameline-Torregrosa; Tom Ashfield; Ethalinda Cannon; Steven B. Cannon; Ben Chacko; Nicolas W.G. Chen; Arnaud Couloux; Anita Dalwani; Roxanne Denny; Shweta Deshpande; Ashley N. Egan; Natasha Glover; Christian S. Hans; Stacy Howell; Dan Ilut; Scott A. Jackson; Hongshing Lai; J. A. Mammadov; Sara Martin del Campo; Michelle Metcalf; Ashley Nguyen; Majesta O'Bleness; Bernard E. Pfeil; Ram Podicheti; Milind B. Ratnaparkhe; Sylvie Samain; Iryna Sanders; Béatrice Segurens; Mireille Sévignac

The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues.


Systematic Biology | 2008

The Reticulate History of Medicago (Fabaceae)

Iván J. Maureira-Butler; Bernard E. Pfeil; Amorntip Muangprom; Thomas C. Osborn; Jeff J. Doyle

The phylogenetic history of Medicago was examined for 60 accessions from 56 species using two nuclear genes (CNGC5 and beta-cop) and one mitochondrial region (rpS14-cob). The results of several analyses revealed that extensive robustly supported incongruence exists among the nuclear genes, the cause of which we seek to explain. After rejecting several processes, hybridization and lineage sorting of ancestral polymorphisms remained as the most likely factors promoting incongruence. Using coalescence simulations, we rejected lineage sorting alone as an explanation of the differences among gene trees. The results indicate that hybridization has been common and ongoing among lineages since the origin of Medicago. Coalescence provides a good framework to test the causes of incongruence commonly seen among gene trees but requires knowledge of effective population sizes and generation times. We estimated the effective population size at 240,000 individuals and assumed a generation time of 1 year in Medicago (many are annual plants). A sensitivity analysis showed that our conclusions remain unchanged using a larger effective population size and/or longer generation time.


PLOS ONE | 2012

Coalescent simulations reveal hybridization and incomplete lineage sorting in Mediterranean Linaria.

José Luis Blanco-Pastor; Pablo Vargas; Bernard E. Pfeil

We examined the phylogenetic history of Linaria with special emphasis on the Mediterranean sect. Supinae (44 species). We revealed extensive highly supported incongruence among two nuclear (ITS, AGT1) and two plastid regions (rpl32-trnLUAG, trnS-trnG). Coalescent simulations, a hybrid detection test and species tree inference in *BEAST revealed that incomplete lineage sorting and hybridization may both be responsible for the incongruent pattern observed. Additionally, we present a multilabelled *BEAST species tree as an alternative approach that allows the possibility of observing multiple placements in the species tree for the same taxa. That permitted the incorporation of processes such as hybridization within the tree while not violating the assumptions of the *BEAST model. This methodology is presented as a functional tool to disclose the evolutionary history of species complexes that have experienced both hybridization and incomplete lineage sorting. The drastic climatic events that have occurred in the Mediterranean since the late Miocene, including the Quaternary-type climatic oscillations, may have made both processes highly recurrent in the Mediterranean flora.


Systematic Botany | 2009

Relationships Among Phaseoloid Legumes Based on Sequences from Eight Chloroplast Regions

Saša Stefanović; Bernard E. Pfeil; Jeffrey D. Palmer; Jeff J. Doyle

Abstract Generic level relationships in phaseoloid legumes have received much attention using chloroplast DNA markers. However, despite this attention not all relationships are yet well-resolved. This study includes trnL-F sequences from across a wide sample of phaseoloid legumes as well as seven additional chloroplast DNA loci (rbcL, atpB, trnK/matK, rpl2, clpP, rps16, and ycf4) analyzed separately and in combination. Together, these data provide support for many relationships generally consistent with, but only weakly supported, in earlier studies. Some major discordant phylogenetic results were found in our separate analyses; for example, ycf4 sequences group Glycine and Teramnus with strong support; however, the combined analysis of the remaining seven loci found incongruent groupings (Glycine and Psoraleeae genera; Teramnus and Amphicarpaea) also with strong support. Network analysis of ycf4 revealed that the conflicting signal (relative to the other seven loci) came from first and second codon positions. These positions also showed significant rate acceleration, together indicating that selection driving convergent molecular evolution is the likely cause of the signal in ycf4, rather than shared history. The major clades within the phaseoloid legumes supported by our analysis are discussed.


Systematic Botany | 2009

Phylogeny of Hibiscus and the Tribe Hibisceae (Malvaceae) Using Chloroplast DNA Sequences of ndhF and the rpl16 Intron

Bernard E. Pfeil; Curt L. Brubaker; Lyn A. Craven; Michael D. Crisp

Abstract Circumscriptions of the genus Hibiscus and the tribe Hibisceae (Malvaceae) are based on morphological features that are not unique in the family. An examination of the literature regarding putatively ancestral morphological features revealed that Hibiscus and Hibisceae may be defined by shared ancestral features, and thus are unlikely to be monophyletic groups. These phylogenetic hypotheses were tested using two chloroplast DNA sequences (a coding region—ndhF, and a non-coding region—the rpl16 intron). Several genera usually placed in Hibisceae were found to occupy positions sister to the rest of the family, as was predicted from our reevaluation of their morphological features. Although the earliest divergences in the family were not resolved by chloroplast DNA topologies alone, several morphological features, when analysed in combination with ndhF, suggested a possible resolution of the basal polytomy. These early divergences are represented by extant genera with relatively restricted distributions, which all possess Australasian species that are sister to more widespread and diverse lineages. This suggests the novel hypothesis that eastern Gondwana may be the centre of origin of the family. The pollen fossil record is consistent with this possibility, but does not support it unambiguously. Unexpectedly the tribes Decaschistieae and Malvavisceae as well as other genera of Hibisceae nest within Hibiscus. Nomenclatural upheavals concerning Hibiscus, one of the worlds most popular horticultural plant genera, will be difficult to avoid. Communicating Editor: James F. Smith


Plant Physiology | 2008

Replication of Nonautonomous Retroelements in Soybean Appears to Be Both Recent and Common

Adam Wawrzynski; Tom Ashfield; Nicolas W.G. Chen; J. A. Mammadov; Ashley Nguyen; Ram Podicheti; Steven B. Cannon; Vincent Thareau; Carine Ameline-Torregrosa; Ethalinda Cannon; Ben Chacko; Arnaud Couloux; Anita Dalwani; Roxanne Denny; Shweta Deshpande; Ashley N. Egan; Natasha Glover; Stacy Howell; Dan Ilut; Hongshing Lai; Sara Martin del Campo; Michelle Metcalf; Majesta O'Bleness; Bernard E. Pfeil; Milind B. Ratnaparkhe; Sylvie Samain; Iryna Sanders; Béatrice Segurens; Mireille Sévignac; Sue Sherman-Broyles

Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.


Cellular and Molecular Life Sciences | 2014

Function and evolution of channels and transporters in photosynthetic membranes

Bernard E. Pfeil; Benoît Schoefs; Cornelia Spetea

Chloroplasts from land plants and algae originated from an endosymbiotic event, most likely involving an ancestral photoautotrophic prokaryote related to cyanobacteria. Both chloroplasts and cyanobacteria have thylakoid membranes, harboring pigment-protein complexes that perform the light-dependent reactions of oxygenic photosynthesis. The composition, function and regulation of these complexes have thus far been the major topics in thylakoid membrane research. For many decades, we have also accumulated biochemical and electrophysiological evidence for the existence of solute transthylakoid transport activities that affect photosynthesis. However, research dedicated to molecular identification of the responsible proteins has only recently emerged with the explosion of genomic information. Here we review the current knowledge about channels and transporters from the thylakoid membrane of Arabidopsis thaliana and of the cyanobacterium Synechocystis sp. PCC 6803. No homologues of these proteins have been characterized in algae, although similar sequences could be recognized in many of the available sequenced genomes. Based on phylogenetic analyses, we hypothesize a host origin for most of the so far identified Arabidopsis thylakoid channels and transporters. Additionally, the shift from a non-thylakoid to a thylakoid location appears to have occurred at different times for different transport proteins. We propose that closer control of and provision for the thylakoid by products of the host genome has been an ongoing process, rather than a one-step event. Some of the proteins recruited to serve in the thylakoid may have been the result of the increased specialization of its pigment-protein composition and organization in green plants.

Collaboration


Dive into the Bernard E. Pfeil's collaboration.

Top Co-Authors

Avatar

Bengt Oxelman

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyn A. Craven

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Thomas Marcussen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Stephan Nylinder

Swedish Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge