Bernard Guest
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernard Guest.
Geological Magazine | 2013
Hamid Reza Javadi; Mohammad R. Ghassemi; Majid Shahpasandzadeh; Bernard Guest; Marzieh Esterabi Ashtiani; Ali Yassaghi; Meyssam Kouhpeyma
The Doruneh Fault System is one of the major transcurrent faults in central Asia, extending ~900 km from western Afghanistan into West-Central Iran. The left-lateral Doruneh Fault System is also a key structure in the Arabia–Eurasia collisional zone, bounding the northern margin of the independent Central Iranian Microplate. The Doruneh Fault System exhibits a curved geometry, and is divided here into three segments: Eastern, Central and Western. We present the results of geological, structural and geomorphic studies into the nature of recent activity along the Doruneh Fault System segments. A surprising observation is that small, relatively young drainage systems often show recent systematic left-lateral displacement across the fault, whereas large rivers indicate a former more complex right-lateral history. Furthermore, the existence of right-lateral offsets of pre-Pliocene rocks and S-C fabrics confirm this earlier phase of right-lateral movement on the fault. We suggest that the early right-lateral kinematics resulted from an earlier NW–SE-directed regional shortening, associated with the anticlockwise rotation of the Central Iranian Microplate. The shortening is characterized by the NE–SW-striking en echelon folds within the fault slivers, the right-lateral Taknar imbricate fan and the superimposed folding exposed north of Kashmar. Thus, assuming an initiation age of Eocene (55.8 Ma) for the fault, we estimate a former right-lateral slip rate of about 5.2–5.5 mm yr −1 , which accompanied the 35° anticlockwise rotation of the Central Iranian Microplate. According to our study, the youngest units exhibiting right-lateral displacement are Middle Miocene in age, suggesting a post-Middle Miocene timing for the onset of slip-sense inversion.
Tectonics | 2015
Hamid Reza Javadi; Marzieh Esterabi Ashtiani; Bernard Guest; Ali Yassaghi; Mohammad R. Ghassemi; Majid Shahpasandzadeh; Amir Naeimi
The left-lateral Doruneh Fault System (DFS) bounds the north margin of the Central Iranian microplate (CIM), and has played an important role in the structural evolution of the Turkish-Iranian plateau. The western termination of the DFS is a sinistral synthetic branch fault array that shows clear kinematic evidence of having undergone recent slip sense inversion from a dextral array to a sinistral array in the latest Neogene or earliest Quaternary. Similarly, kinematic evidence from the Anarak Metamorphic complex suggests that this complex initially developed at a transpressive left stepping termination of the DFS and that it was inverted in the latest Neogene to a transtensional fault termination. The recognition that the DFS and other faults in NE Iran were inverted from dextral to sinistral strike slip in the latest Neogene, and the likely connection between the DFS and the Herat Fault of Afghanistan suggests that prior to the latest Miocene, all of the north Iranian and northern Afghan ranges were part of a distributed dextral fault network that extended from the west Himalayan syntaxes to the western Alborz. Also, the recognition that regional slip sense inversion occurred across Northern and Northeastern Iran after the latest Miocene invalidates tectonic models that extrapolate Pleistocene to Recent fault slip kinematics and rates back beyond this time.
Tectonics | 2017
William A. Matthews; Bernard Guest; D. Coutts; Heather A. Bain; Stephen M. Hubbard
The development of the Cordilleran orogen of western North American is disputed despite a century of study. Paleomagnetic observations require large-scale dextral displacements of crustal fragments along the western margin of North America, from low latitudes to moderate latitudes during the Cretaceous-Paleogene. A lack of corroborating geological evidence for large-scale (>1500xa0km) displacements has prevented the widespread integration of paleomagnetic data into most contemporary tectonic models for the margin. Here we use detrital zircons from the Nanaimo basin, southwestern British Columbia, Canada as an independent test of its Late Cretaceous paleogeographic position. We compare 4310 detrital zircon U/Pb dates from 16 samples to potential source areas in western North America to test hypothesized northern and southern Late Cretaceous paleogeographic positions. Our detrital zircon data suggest that sediment in the Nanaimo basin derives from either a geographically restricted portion of the Belt-Purcell basin or the Mojave-Sonoran region of southwestern North America. A paleogeographic position for the basin adjacent to the Mojave-Sonoran region is preferred as it is consistent with the paleomagnetic results, but further geological, isotopic, or geophysical data are required to rule out a Belt-Purcell source.
Bulletin of Volcanology | 2015
Christian Kuehn; Bernard Guest; James K. Russell; Jeff A. Benowitz
The Satah Mountain and Baldface Mountain volcanic fields (SMVF, BMVF) comprise more than three dozen small volcanic centers and erosional remnants thereof. These fields are located in the Chilcotin Highland of west-central British Columbia, Canada, and are spatially associated with the Anahim Volcanic Belt (AVB), a linear feature of alkaline to peralkaline plutonic and volcanic centers of Miocene to Holocene ages. The AVB has been postulated to be the track of a hot spot passing beneath the westward moving Cordilleran lithosphere. We test the AVB hot spot model by applying whole-rock 40Ar/39Ar geochronology (nu2009=u200924) and geochemistry. Whole-rock chemical compositions of volcanic rock samples (nu2009=u200959) from these two fields suggest a strong geochemical affinity with the nearby Itcha Range shield volcano; however, SMVF and BMVF centers are mostly small in volume (<1xa0km3) and differ in composition from one another, even where they are in close spatial proximity. Trace element and REE patterns of mafic AVB lavas are similar to ocean island basalts (OIB), suggesting a mantle source for these lavas. The age ranges for the SMVF (nu2009=u200911; ~2.21 to ~1.43xa0Ma) and BMVF (nu2009=u20097; ~3.91 to ~0.91xa0Ma) are largely coeval with the Itcha Range. The distribution of volcanoes in these two volcanic fields is potentially consistent with the postulated AVB hot spot track. Eruption rates in the SMVF were high enough to build an elongated ridge that deviates from the E-W trend of the AVB by almost 90°. This deviation might reflect the mechanisms and processes facilitating magma generation and ascent through the lithosphere in this tectonically complex region and may also indicate interaction of the potential hot spot with (pre)existing fracture systems in vicinity of the Itcha Range.
Geosphere | 2009
Kevin H. Mahan; Bernard Guest; Brian P. Wernicke; Nathan A. Niemi
The Stateline fault system is a 200-km-long zone of active right-lateral shear along the California-Nevada border, United States. Recent identification of 30 ± 4 km of dextral offset since 13.1 Ma on the southern segment of the fault requires significant displacement to extend farther south than has been commonly considered in the past. However, major structures exposed where the fault projects to the south reveal predominantly dip-slip extensional faulting, suggesting that displacement is transferred into substantial northwest-oriented extension in eastern Ivanpah Valley. New (U-Th)/He apatite data from Proterozoic orthogneiss in the southern McCullough Range and northern New York Mountains support this model by recording dates as young as 5 ± 1 Ma in the structurally deepest parts of the footwalls to the range-bounding normal faults. This age is distinctly younger than both the ages of regional extension in surrounding areas and the youngest (U-Th)/He apatite dates reported from the immediately adjacent Colorado River extensional corridor. Late Miocene–Pliocene extension in Ivanpah Valley, contemporaneous with that elsewhere in the Eastern California shear zone, provides an independent line of support that the eastern margin of the Eastern California shear zone extends to the California-Nevada border. If this age marks the onset of deformation on the State-line system, then long-term slip rates on the southern segment may be as high as 5 mm/yr, significantly higher than the present-day estimate of 0.9 mm/yr derived from geodetic observations across the northern segment of this fault system.
Geosphere | 2017
William A. Matthews; Bernard Guest; Lauren Madronich
Late Neoproterozoic to Cambrian sandstone units are common in western Laurentia and record initial transgression of the craton after the formation of the western passive margin during the latest Neoproterozoic to earliest Cambrian. Detrital zircon measurements from 42 latest Neoproterozoic to Cambrian basal Sauk sequences and five older Neoproterozoic sandstone samples from a region extending from the Mexico–United States border to central British Columbia, Canada, are combined with previous results to characterize sediment source areas and dispersal systems. Detrital zircon populations in Neoproterozoic and Cambrian sedimentary rocks are divided into six facies based on a statistical comparison using multidimensional scaling. Detrital zircon facies are found in unique geographical regions reflecting proximity to the major tectonic provinces of Laurentia. Samples from northern regions are dominated by Archean and Paleoproterozoic zircons derived from Archean tectonic provinces and the orogenic belts that record the assembly of the Laurentian craton. More southerly sample locations show an increase in detrital zircons derived from younger Paleoproterozoic orogenic belts and early Mesoproterozoic intrusive suites. Detrital zircons from Grenville-aged sources are common in the south. The Transcontinental Arch, a feature interpreted to have controlled large-scale sediment dispersal patterns in the midto late Cambrian, likely played a major role in isolating the southern and northern signatures. Our data set can be used to test tectonic models for the Cordilleran orogen that invoke Jurassic or Cretaceous collision of a ribbon continent as the driving mechanism for orogenesis. Cambrian rocks of the Cassiar-Antler platform juxtaposed with North America during the hypothetical ribbon continent collision show the same geographic distribution of detrital zircon facies as similar-aged rocks from autochthonous and parautochthonous locations on the Laurentian margin. The concordance of detrital zircon facies across the proposed suture is a negative result for models that predict large dextral displacements, on the order of 2000 km, across the suture.
Lithosphere | 2016
Garrett M. Quinn; Stephen M. Hubbard; Reid van Drecht; Bernard Guest; William A. Matthews; Thomas Hadlari
Jurassic–Cretaceous sedimentary rocks of the Alberta foreland basin are a key record of the evolution of the Canadian Cordillera. We test a recent model for cyclical development of Cordilleran orogenic systems using detrital zircon analysis of the major sandstone units deposited between 145 and 80 Ma exposed in the Rocky Mountain Foothills near Grande Cache, Alberta. The basin history is well constrained by decades of study, and the stratigraphy has been previously subdivided into tectonostratigraphic wedges. U-Pb data from 14 detrital zircon samples are included in this study. All the major magmatic provinces of North America are represented in each sample, with the relative proportions varying between samples. The samples are assigned to five groups with the aid of multidimensional scaling. Groups 1–3 are interpreted to record recycling from specific passive-margin units of western North America with varying input from the Cordilleran magmatic arc. Group 4 is interpreted to record recycling from sedimentary strata in the United States and dispersal by basin-axial fluvial systems. Group 5 is dominated by Mesozoic zircon grains interpreted to have originated in the Cordilleran magmatic arc. Detrital zircon age spectra do not form groups based on the tectonostratigraphic wedges from which they were sampled; rather, within each tectonostratigraphic wedge, they exhibit evolution from diverse age spectra to a less-diverse distribution of detrital zircon ages.nnWe constructed a proxy for magmatic flux of the Cordilleran magmatic arc using detrital zircon ages younger than 200 Ma; it shows three modes at ca. 165, 115, and 74 Ma. These ages are considered high-flux episodes of magmatism that are linked to cyclical uplift and plateau formation in the orogen. This cyclical process is interpreted to: (1) control sedimentation rates in the foreland; (2) account for evolving provenance by altering catchments; and (3) be a plausible mechanism for the deposition of the tectonostratigraphic wedges in the Alberta foreland basin.
Lithosphere | 2018
Daniel Alonso-Torres; B. Beauchamp; Bernard Guest; Thomas Hadlari; William A. Matthews
Paleozoic and Mesozoic tectonic reconstructions of the Arctic regions have been a subject of debate in recent years. The Permian emergence of a landmass north of the Sverdrup Basin in the Canadian Arctic led to the shedding of northerly derived detritus, an event that followed volcanism and basin inversion pulses that began in the late Pennsylvanian. However, the mechanisms for these events and the Paleozoic to Mesozoic paleogeography of this region remain controversial. New detrital zircon U-Pb geochronology results from Permian to Lower Triassic strata from northern Axel Heiberg and Ellesmere islands constrain the magmatic events within this northern landmass and its implications for the tectonic regime of the Sverdrup Basin and adjacent domains. Permian to lowermost Triassic strata along the northern margin of the Sverdrup Basin contain zircons derived from Silurian to Devonian rocks (420–350 Ma), Timanian-aged basement (700–500 Ma), and a Permian syndepositional source (300–250 Ma). Coeval strata in the southern margin are dominated by zircons formed during the Taconic, Scandian, and post-Scandian phases of the Appalachian and Caledonian orogenies, respectively (480–400 Ma). The detrital zircon signatures of the analyzed strata on the northern margin of the Sverdrup Basin record continuous magmatism within the northern landmass from latest Carboniferous (ca. 300 Ma) to at least earliest Triassic (ca. 250 Ma) time. These results are indicative of ongoing subduction and development of a magmatic arc off the northern margin of Laurentia, with the Sverdrup Basin potentially located in the backarc region of a proto-Pacific convergent margin involving parts of Arctic Alaska, Chukotka, and the Chukchi Shelf. The hypothesized onset of subduction in latest Carboniferous time and closure of this backarc basin in the latest Permian to earliest Triassic provides an explanation for the shift in stress regimes in the Sverdrup Basin that led to basin inversion and volcanism episodes. Therefore, the data presented here supports a backarc to retroarc setting for the Sverdrup Basin and the possibility of a convergent margin regime for the northern edge of Laurentia during the late Paleozoic to Triassic, contrasting with the generally accepted rift and passive margin settings. LITHOSPHERE; v. 10; no. 3; p. 426–445; GSA Data Repository Item 2018093 | Published online 23 March 2018 https://doi.org/10.1130/L683.1
Geosphere | 2018
Garrett M. Quinn; Stephen M. Hubbard; Peter E. Putnam; William A. Matthews; Benjamin G. Daniels; Bernard Guest
The Late Jurassic to Early Cretaceous fill of the Western Interior foreland basin is characterized using geochronological data in order to assess the stratigraphic expression of wedge-top geomorphology, as controlled by sediment cover and denudation. In northern Montana, USA, and Alberta, Canada, wedge-top deposits are poorly preserved; however, their former presence may be inferred from the detrital record in the foreland basin. We present new U/Pb detrital zircon data from nine samples collected near Great Falls, Montana, augmented with field data. The stratigraphy at Great Falls is characterized by Late Jurassic marine and nonmarine deposits, which are truncated by a basinwide sub-Cretaceous unconformity. Aptian and lower Albian strata overlying the unconformity are dominated by nonmarine deposits, which transition up-section into a predominantly marine succession related to a major transgression of the Boreal Seaway in the Albian. Detrital zircon grains from Great Falls strata yield age spectra that can be subdivided into three groups using multidimensional scaling. Group 1 is characterized by diverse zircon populations, which are interpreted to record recycling of pre-Cordilleran sedimentary strata transported via foreland basin-axial river systems with headwaters in the southwestern United States. Group 2 is characterized by the dominance of Mesozoic detrital zircon grains, which are interpreted to record sediment dispersal by fluvial systems with headwaters in the Cordillera. Group 3 is intermediate between groups 1 and 2, based on its proportion of Mesozoic zircon grains. This group records a diversification of the provenance from one dominated by Cordilleran igneous rocks to include recycled sedimentary strata. New data are integrated with three other data sets from Montana and Alberta such that stratal thicknesses (a proxy for accommodation development) and provenance evolution can be compared across the basin. The detrital record in each area, which transitions from diverse provenance to predominantly Cordilleran through the entire stratigraphic section, can be linked to the burial of the pre-foreland strata in the wedge-top depozone. This record elucidates a period of evolution of the western margin of North America to a more Andean-type system with primary input to the basin from an active magmatic arc. INTRODUCTION Aggradation and denudation of proximal foreland basin deposits in the wedge-top depozone are first-order controls on sediment flux to more-distal parts of foreland basin systems (Ben-Avraham and Emery, 1973; DeCelles, 1994; DeCelles and Giles, 1996; Roddaz et al., 2005; Ross et al., 2005; Horton, 2018). Burial of the frontal toe of the orogen can heal complex topography and enhance direct sediment transfer from the orogenic hinterland to a basin. Conversely, denudation of these wedge-top sediments can lead to structural control of river pathways; the process also can expose older stratigraphy in the orogenic wedge, which can be reflected by provenance changes in the adjacent foreland basin (Ross et al., 2005; Lawton et al., 2010). Sediments in the wedge-top depozone accumulate on top of orogenic structures and are part of the frontal toe of the orogenic wedge (DeCelles and Giles, 1996). These synorogenic strata accumulate near the erosional/depositional surface and are characterized by low preservation potential such that the history of sedimentation in this zone is difficult to discern (e.g., Coogan, 1992; Frisch et al., 2001; McMechan et al., 2018). More distal parts of the foreland basin contain well-established records of orogenic processes (e.g., Heller and Paola, 1989; Ross et al., 2005; Quinn et al., 2016). Therefore, we hypothesize that the history of the wedge-top depozone can be elucidated by investigating strata in more-distal parts of the foreland basin. This is particularly relevant to understanding topographic evolution in fold-thrust belts that have been deeply incised during subsequent orogenesis and glaciation (Osborn et al., 2006). We present a detrital zircon data set from Western Interior basin strata exposed near Great Falls, Montana, USA. The units provide a unique window into the Late Jurassic–Early Cretaceous evolution of the foreland basin because outcrops of these strata are rare except within the fold-thrust belt, which is ~100 km west of the study area. New data are integrated with previously presented data sets from across the basin in order to consider the history of burial and exhumation of the frontal toe of the orogenic wedge (Fig. 1) ( Fuentes et al., 2011; Leier and Gehrels, 2011; Raines et al., 2013; Benyon et al., 2014; Blum and Pecha, 2014; Quinn et al., 2016). This study emphasizes the potential impact of wedge-top dynamics on sediment dispersal across foreland basins and the structural evolution of the orogen. GEOSPHERE GEOSPHERE; v. 14, no. 3 https://doi.org/10.1130/GES01606.1 12 figures; 1 table; 1 supplemental file CORRESPONDENCE: garrett .quinn@ ucalgary.ca; gquinn7@ gmail .com CITATION: Quinn, G.M., Hubbard, S.M., Putnam, P.E., Matthews, W.A., Daniels, B.G., and Guest, B., 2018, A Late Jurassic to Early Cretaceous record of orogenic wedge evolution in the Western Interior basin, USA and Canada: Geosphere, v. 14, no. 3, p. 1187–1206, https:// doi .org /10 .1130 /GES01606.1. Science Editor: Raymond M. Russo Received 24 August 2017 Revision received 21 February 2018 Accepted 16 April 2018 Published online 7 May 2018
Geostandards and Geoanalytical Research | 2017
William A. Matthews; Bernard Guest