Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Lepetit is active.

Publication


Featured researches published by Bernard Lepetit.


Photosynthesis Research | 2012

Molecular dynamics of the diatom thylakoid membrane under different light conditions

Bernard Lepetit; Reimund Goss; Torsten Jakob; Christian Wilhelm

During the last years significant progress was achieved in unraveling molecular characteristics of the thylakoid membrane of different diatoms. With the present review it is intended to summarize the current knowledge about the structural and functional changes within the thylakoid membrane of diatoms acclimated to different light conditions. This aspect is addressed on the level of the organization and regulation of light-harvesting proteins, the dissipation of excessively absorbed light energy by the process of non-photochemical quenching, and the lipid composition of diatom thylakoid membranes. Finally, a working hypothesis of the domain formation of the diatom thylakoid membrane is presented to highlight the most prominent differences of heterokontic thylakoids in comparison to vascular plants and green algae during the acclimation to low and high light conditions.


Plant Physiology | 2013

High Light Acclimation in the Secondary Plastids Containing Diatom Phaeodactylum tricornutum is Triggered by the Redox State of the Plastoquinone Pool

Bernard Lepetit; Sabine Sturm; Alessandra Rogato; Ansgar Gruber; Matthias Sachse; Angela Falciatore; Peter G. Kroth; Johann Lavaud

Summary: The redox state of the plastidic plastoquinone pool triggers a retrograde signal in diatoms, organisms with plastids evolved by secondary endosymbiosis. In diatoms, the process of energy-dependent chlorophyll fluorescence quenching (qE) has an important role in photoprotection. Three components are essential for qE: (1) the light-dependent generation of a transthylakoidal proton gradient; (2) the deepoxidation of the xanthophyll diadinoxanthin (Dd) into diatoxanthin (Dt); and (3) specific nucleus-encoded antenna proteins, called Light Harvesting Complex Protein X (LHCX). We used the model diatom Phaeodactylum tricornutum to investigate the concerted light acclimation response of the qE key components LHCX, proton gradient, and xanthophyll cycle pigments (Dd+Dt) and to identify the intracellular light-responsive trigger. At high-light exposure, the up-regulation of three of the LHCX genes and the de novo synthesis of Dd+Dt led to a pronounced rise of qE. By inhibiting either the conversion of Dd to Dt or the translation of LHCX genes, qE amplification was abolished and the diatom cells suffered from stronger photoinhibition. Artificial modification of the redox state of the plastoquinone (PQ) pool via 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone resulted in a disturbance of Dd+Dt synthesis in an opposite way. Moreover, we could increase the transcription of two of the four LHCX genes under low-light conditions by reducing the PQ pool using 5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone. Altogether, our results underline the central role of the redox state of the PQ pool in the light acclimation of diatoms. Additionally, they emphasize strong evidence for the existence of a plastid-to-nucleus retrograde signaling mechanism in an organism with plastids that derived from secondary endosymbiosis.


Biochimica et Biophysica Acta | 2013

An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms.

Johann Lavaud; Bernard Lepetit

Diatoms are a major group of microalgae whose photosynthetic productivity supports a substantial part of the aquatic primary production. In their natural environment they have to cope with strong fluctuations of the light climate which can be harmful for photosynthesis. In order to prevent the damage of their photosynthetic machinery, diatoms use fast regulatory processes among which the non-photochemical quenching of chlorophyll a fluorescence (NPQ) is one of the most important. In a previous work, we highlighted differences in the kinetics and extent of NPQ between diatom species/strains originating from different aquatic habitats. We proposed that the NPQ differences observed between strains/species could potentially participate to their ecophysiological adaptation to the light environment of their respective natural habitat. In order to better understand the molecular bases of such differences, we compared the NPQ features of four strains/species of diatoms known for their NPQ discrepancy. We could identify new spectroscopic fingerprints concomitant to NPQ and the related xanthophyll cycle. These fingerprints helped us propose a molecular explanation for the NPQ differences observed between the diatom species/strains examined. The present work further strengthens the potential role of NPQ in the ecophysiology of diatoms.


Angewandte Chemie | 2014

Synthetic Polyester from Algae Oil

Philipp Roesle; Florian Stempfle; Sandra K. Hess; Julia Zimmerer; Carolina Río Bártulos; Bernard Lepetit; Angelika Eckert; Peter G. Kroth; Stefan Mecking

Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature.


The ISME Journal | 2015

Growth form defines physiological photoprotective capacity in intertidal benthic diatoms

Alexandre Barnett; Vona Méléder; Lander Blommaert; Bernard Lepetit; Pierre Gaudin; Wim Vyverman; Koen Sabbe; Christine Dupuy; Johann Lavaud

In intertidal marine sediments, characterized by rapidly fluctuating and often extreme light conditions, primary production is frequently dominated by diatoms. We performed a comparative analysis of photophysiological traits in 15 marine benthic diatom species belonging to the four major morphological growth forms (epipelon (EPL), motile epipsammon (EPM-M) and non-motile epipsammon (EPM-NM) and tychoplankton (TYCHO)) found in these sediments. Our analyses revealed a clear relationship between growth form and photoprotective capacity, and identified fast regulatory physiological photoprotective traits (that is, non-photochemical quenching (NPQ) and the xanthophyll cycle (XC)) as key traits defining the functional light response of these diatoms. EPM-NM and motile EPL showed the highest and lowest NPQ, respectively, with EPM-M showing intermediate values. Like EPL, TYCHO had low NPQ, irrespective of whether they were grown in benthic or planktonic conditions, reflecting an adaptation to a low light environment. Our results thus provide the first experimental evidence for the existence of a trade-off between behavioural (motility) and physiological photoprotective mechanisms (NPQ and the XC) in the four major intertidal benthic diatoms growth forms using unialgal cultures. Remarkably, although motility is restricted to the raphid pennate diatom clade, raphid pennate species, which have adopted a non-motile epipsammic or a tychoplanktonic life style, display the physiological photoprotective response typical of these growth forms. This observation underscores the importance of growth form and not phylogenetic relatedness as the prime determinant shaping the physiological photoprotective capacity of benthic diatoms.


Journal of Experimental Botany | 2016

Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum

Lucilla Taddei; Giulio Rocco Stella; Alessandra Rogato; Benjamin Bailleul; Antonio Emidio Fortunato; Rossella Annunziata; Remo Sanges; Michael Thaler; Bernard Lepetit; Johann Lavaud; Marianne Jaubert; Giovanni Finazzi; Jean-Pierre Bouly; Angela Falciatore

Highlight Multiple stress signalling pathways regulate LHCX family gene expression in the diatom Phaeodactylum tricornutum to attune acclimation responses efficiently in highly variable ocean environments.


Environmental Microbiology | 2015

Response of intertidal benthic microalgal biofilms to a coupled light-temperature stress : evidence for latitudinal adaptation along the Atlantic coast of Southern Europe

Martin Laviale; Alexandre Barnett; João Ezequiel; Bernard Lepetit; Silja Frankenbach; Vona Méléder; João Serôdio; Johann Lavaud

Although estuarine microphytobenthos (MPB) is frequently exposed to excessive light and temperature conditions, little is known on their interactive effects on MPB primary productivity. Laboratory and in situ experiments were combined to investigate the short-term joint effects of high light (HL) and high temperature (37 °C versus 27 °C) on the operating efficiency of photoprotective processes [vertical migration versus non-photochemical quenching (NPQ)] exhibited by natural benthic diatom communities from two intertidal flats in France (FR) and Portugal (PT). A clear latitudinal pattern was observed, with PT biofilms being more resistant to HL stress, regardless the effect of temperature, and displaying a lower relative contribution of vertical migration to photoprotection and a stronger NPQ in situ. However, higher temperature leads to comparable effects, with photoinhibition increasing to about three times (i.e. from 3% to 10% and from 8% to 22% in PT and FR sites respectively). By using a number of methodological novelties in MPB research (lipid peroxidation quantification, Lhcx proteins immunodetection), this study brings a physiological basis to the previously reported depression of MPB photosynthetic productivity in summer. They emphasize the joint role of temperature and light in limiting, at least transiently (i.e. during emersion), MPB photosynthetic activity in situ.


Plant Physiology | 2018

Dynamic changes between two LHCX-related energy quenching sites control diatom photoacclimation

Lucilla Taddei; Volha Chukhutsina; Bernard Lepetit; Giulio Rocco Stella; Roberto Bassi; Herbert van Amerongen; Jean-Pierre Bouly; Marianne Jaubert; Giovanni Finazzi; Angela Falciatore

Multiple LHCX-related quenching sites control short- and long-term high-light acclimation in the marine diatom Phaeodactylum tricornutum. Marine diatoms are prominent phytoplankton organisms that perform photosynthesis in extremely variable environments. Diatoms possess a strong ability to dissipate excess absorbed energy as heat via nonphotochemical quenching (NPQ). This process relies on changes in carotenoid pigment composition (xanthophyll cycle) and on specific members of the light-harvesting complex family specialized in photoprotection (LHCXs), which potentially act as NPQ effectors. However, the link between light stress, NPQ, and the existence of different LHCX isoforms is not understood in these organisms. Using picosecond fluorescence analysis, we observed two types of NPQ in the pennate diatom Phaeodactylum tricornutum that were dependent on light conditions. Short exposure of low-light-acclimated cells to high light triggers the onset of energy quenching close to the core of photosystem II, while prolonged light stress activates NPQ in the antenna. Biochemical analysis indicated a link between the changes in the NPQ site/mechanism and the induction of different LHCX isoforms, which accumulate either in the antenna complexes or in the core complex. By comparing the responses of wild-type cells and transgenic lines with a reduced expression of the major LHCX isoform, LHCX1, we conclude that core complex-associated NPQ is more effective in photoprotection than is the antenna complex. Overall, our data clarify the complex molecular scenario of light responses in diatoms and provide a rationale for the existence of a degenerate family of LHCX proteins in these algae.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Reduced vacuolar β-1,3-glucan synthesis affects carbohydrate metabolism as well as plastid homeostasis and structure in Phaeodactylum tricornutum

Weichao Huang; Ilka Haferkamp; Bernard Lepetit; Mariia Molchanova; Shengwei Hou; Wolfgang Jeblick; Carolina Río Bártulos; Peter G. Kroth

Significance Diatoms contribute considerably to the primary productivity of aquatic ecosystems. In diatoms, the principal storage polysaccharide is chrysolaminarin, consisting of branched β-1,3-glucans. The β-1,3-glucans are distributed widely in organisms and, besides starch and glycogen, represent major storage polysaccharides in nature. However, the synthesis pathway of storage β-1,3-glucans is still unclear. We report the localization of the glucan synthase, and thus the elongation of the glucan polymer, in the tonoplast membrane of the diatom Phaeodactylum tricornutum. Reduced expression of this glucan synthase results in various cellular effects. Our data indicate that the capacity of vacuolar polysaccharide storage substantially influences the photosynthetic performance of the plastid. The β-1,3-glucan chrysolaminarin is the main storage polysaccharide of diatoms. In contrast to plants and green algae, diatoms and most other algal groups do not accumulate storage polysaccharides in their plastids. The diatom Phaeodactylum tricornutum possesses only a single gene encoding a putative β-1,3-glucan synthase (PtBGS). Here, we characterize this enzyme by expressing GFP fusion proteins in P. tricornutum and by creating and investigating corresponding gene silencing mutants. We demonstrate that PtBGS is a vacuolar protein located in the tonoplast. Metabolite analyses of two mutant strains with reduced amounts of PtBGS reveal a reduction in their chrysolaminarin content and an increase of soluble sugars and lipids. This indicates that carbohydrates are shunted into alternative pathways when chrysolaminarin production is impaired. The mutant strains show reduced growth and lower photosynthetic capacities, while possessing higher photoprotective abilities than WT cells. Interestingly, a strong reduction in PtBGS expression also results in aberrations of the usually very regular thylakoid membrane patterns, including increased thylakoid thickness, reduced numbers of thylakoids per plastid, and increased numbers of lamellae per thylakoid stack. Our data demonstrate the complex intertwinement of carbohydrate storage in the vacuoles with carbohydrate metabolism, photosynthetic homeostasis, and plastid morphology.


Plant Cell and Environment | 2018

Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba Mill. (Pinaceae, Coniferales) : a combined approach

Veit Martin Dörken; Bernard Lepetit

Morphology, anatomy and physiology of sun and shade leaves of Abies alba were investigated and major differences were identified, such as sun leaves being larger, containing a hypodermis and palisade parenchyma as well as possessing more stomata, while shade leaves exhibit a distinct leaf dimorphism. The large size of sun leaves and their arrangement crowded on the upper side of a plagiotropic shoot leads to self-shading which is explainable as protection from high solar radiation and to reduce the transpiration via the lamina. Sun leaves furthermore contain a higher xanthophyll cycle pigment amount and Non-Photochemical Quenching (NPQ) capacity, a lower amount of chlorophyll b and a total lower chlorophyll amount per leaf, as well as an increased electron transport rate and an increased photosynthesis light saturation intensity. However, sun leaves switch on their NPQ capacity at rather low light intensities, as exemplified by several parameters newly measured for conifers. Our holistic approach extends previous findings about sun and shade leaves in conifers and demonstrates that both leaf types of A. alba show structural and physiological remarkable similarities to their respective counterparts in angiosperms, but also possess unique characteristics allowing them to cope efficiently with their environmental constraints.

Collaboration


Dive into the Bernard Lepetit's collaboration.

Top Co-Authors

Avatar

Johann Lavaud

University of La Rochelle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Rogato

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge