Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Maro is active.

Publication


Featured researches published by Bernard Maro.


Current Biology | 2005

Mitotic Spindles and Cleavage Planes Are Oriented Randomly in the Two-Cell Mouse Embryo

Sophie Louvet-Vallée; Stéphanie Vinot; Bernard Maro

Most experimental embryological studies performed on the early mouse embryo have led to the conclusion that there are no mosaically distributed developmental determinants in the zygote and early embryo (for example see [1-6]). It has been suggested recently that the cleavage pattern of the early mouse embryo is not random and that the three-dimensional body plan is pre-patterned in the egg (in [7] for review see [8-10]). Two major spatial cues influencing the pattern of cleavage divisions have been proposed: the site of the second meiotic division [11, 12] and the sperm entry point [13-14], although the latter is controversial [15-17]. An implication of this hypothesis is that the orientations of the first few cleavage divisions are stereotyped. Such a define cleavage pattern, leading to the segregation of developmental determinants, is observed in many species [18]. Recently, it was shown that the first cleavage plane is not predetermined but defined by the topology of the two apposing pronuclei [19]. Because the position of the female pronucleus is dependent upon the site of polar body extrusion and the position of the male pronuclei is dependent upon the sperm entry point [19-20], this observation leaves open the possibility that the sperm may provide some kind of directionality [7]. But, even if asymmetries were set up only after fertilization, a stereotyped cleavage pattern should take place during the following cleavage divisions. Thus, we studied the cleavage pattern of two-cell embryos by videomicroscopy to distinguish between the two hypotheses. After the mitotic spindle formed, its orientation did not change until cleavage. During late metaphase and anaphase, the spindle poles appear to be anchored to the cortex through astral microtubules and PARD6a. Only at the time of cleavage, during late anaphase, do the forming daughter cells change their relative positions. These studies show that cleavage planes are oriented randomly in two-cell embryos. This argues against a prepatterning of the mouse embryo before compaction.


PLOS ONE | 2008

Meiotic Regulation of TPX2 Protein Levels Governs Cell Cycle Progression in Mouse Oocytes

Stéphane Brunet; Julien Dumont; Karen W. Lee; Kazuhisa Kinoshita; Pascale Hikal; Oliver J. Gruss; Bernard Maro; Marie-Hélène Verlhac

Formation of female gametes requires acentriolar spindle assembly during meiosis. Mitotic spindles organize from centrosomes and via local activation of the RanGTPase on chromosomes. Vertebrate oocytes present a RanGTP gradient centred on chromatin at all stages of meiotic maturation. However, this gradient is dispensable for assembly of the first meiotic spindle. To understand this meiosis I peculiarity, we studied TPX2, a Ran target, in mouse oocytes. Strikingly, TPX2 activity is controlled at the protein level through its accumulation from meiosis I to II. By RNAi depletion and live imaging, we show that TPX2 is required for spindle assembly via two distinct functions. It controls microtubule assembly and spindle pole integrity via the phosphorylation of TACC3, a regulator of MTOCs activity. We show that meiotic spindle formation in vivo depends on the regulation of at least a target of Ran, TPX2, rather than on the regulation of the RanGTP gradient itself.


PLOS ONE | 2009

Inactivation of aPKCλ Reveals a Context Dependent Allocation of Cell Lineages in Preimplantation Mouse Embryos

Nicolas Dard; Tran Le; Bernard Maro; Sophie Louvet-Vallée

Background During mammalian preimplantation development, lineage divergence seems to be controlled by the interplay between asymmetric cell division (once cells are polarized) and positional information. In the mouse embryo, two distinct cell populations are first observed at the 16-cell stage and can be distinguished by both their position (outside or inside) and their phenotype (polarized or non-polarized). Many efforts have been made during the last decade to characterize the molecular mechanisms driving lineage divergence. Methodology/Principal Findings In order to evaluate the importance of cell polarity in the determination of cell fate we have disturbed the activity of the apical complex aPKC/PAR6 using siRNA to down-regulate aPKCλ expression. Here we show that depletion of aPKCλ results in an absence of tight junctions and in severe polarity defects at the 16-cell stage. Importantly, we found that, in absence of aPKCλ, cell fate depends on the cellular context: depletion of aPKCλ in all cells results in a strong reduction of inner cells at the 16-cell stage, while inhibition of aPKCλ in only half of the embryo biases the progeny of aPKCλ defective blastomeres towards the inner cell mass. Finally, our study points to a role of cell shape in controlling cell position and thus lineage allocation. Conclusion Our data show that aPKCλ is dispensable for the establishment of polarity at the 8-cell stage but is essential for the stabilization of cell polarity at the 16-cell stage and for cell positioning. Moreover, this study reveals that in addition to positional information and asymmetric cell divisions, cell shape plays an important role for the control of lineage divergence during mouse preimplantation development. Cell shape is able to influence both the type of division (symmetric or asymmetric) and the position of the blastomeres within the embryo.


Molecular and Cellular Endocrinology | 2008

Morphogenesis of the mammalian blastocyst.

Nicolas Dard; Manuel Breuer; Bernard Maro; Sophie Louvet-Vallée

The first 4 days of mouse pre-implantation development are characterized by a period of segmentation, including morphogenetic events that are required for the divergence of embryonic and extra-embryonic lineages. These extra-embryonic tissues are essential for the implantation into the maternal uterus and for the development of the foetus. In this review, we first discuss data showing unambiguously that no essential axis of development is set up before the late blastocyst stage, and explain why the pre-patterning described during the early phases (segmentation) of development in other vertebrates cannot apply to mammalian pre-implantation period. Then, we describe important cellular and molecular events that are required for the morphogenesis of the blastocyst.


Reproduction | 2007

Germinal vesicle position and meiotic maturation in mouse oocyte

Stéphane Brunet; Bernard Maro

During meiotic maturation, mammalian oocytes undergo an asymmetric division which is crucial for the formation of a functional gamete. In various organisms, accurate positioning of the nucleus before M-phase plays a major role in asymmetric cell divisions. However, the role of the position of the nucleus (or germinal vesicle, GV) during the prophase I arrest has not been investigated in mammalian oocytes. Here, we show that incompetent mouse oocytes possess a peripheral GV, while competent oocytes mainly exhibit a central position of the GV. At that time, the position of the GV correlates with the ability of the oocyte to complete meiotic maturation. Moreover, a lower efficiency in GV centering and a reduced ability to progress through meiosis are observed in oocytes from old mice. Thus, the position of the GV could be used as a simple morphological marker of oocyte quality.


PLOS ONE | 2009

Orientation of mitotic spindles during the 8- to 16-cell stage transition in mouse embryos.

Nicolas Dard; Sophie Louvet-Vallée; Bernard Maro

Background Asymmetric cell divisions are involved in the divergence of the first two lineages of the pre-implantation mouse embryo. They first take place after cell polarization (during compaction) at the 8-cell stage. It is thought that, in contrast to many species, spindle orientation is random, although there is no direct evidence for this. Methodology/Principal Findings Tubulin-GFP and live imaging with a spinning disk confocal microscope were used to directly study spindle orientation in whole embryos undergoing the 8- to 16-cell stage transition. This approach allowed us to determine that there is no predetermined cleavage pattern in 8-cell compacted mouse embryos and that mitotic spindle orientation in live embryo is only modulated by the extent of cell rounding up during mitosis. Conclusions These results clearly demonstrate that spindle orientation is not controlled at the 8- to 16-cell transition, but influenced by cell bulging during mitosis, thus reinforcing the idea that pre-implantation development is highly regulative and not pre-patterned.


Reproduction | 2007

Vezatin, a ubiquitous protein of adherens cell–cell junctions, is exclusively expressed in germ cells in mouse testis

Vincent Hyenne; Juergen C Harf; Martin Latz; Bernard Maro; Uwe Wolfrum; Marie-Christine Simmler

In the male reproductive organs of mammals, the formation of spermatozoa takes place during two successive phases: differentiation (in the testis) and maturation (in the epididymis). The first phase, spermiogenesis, relies on a unique adherens junction, the apical ectoplasmic specialization linking the epithelial Sertoli cells to immature differentiating spermatids. Vezatin is a transmembrane protein associated with adherens junctions and the actin cytoskeleton in most epithelial cells. We report here the expression profile of vezatin during spermatogenesis. Vezatin is exclusively expressed in haploid germ cells. Immunocytochemical and ultrastructural analyses showed that vezatin intimately coincides, temporally and spatially, with acrosome formation. While vezatin is a transmembrane protein associated with adherens junctions in many epithelial cells, it is not seen at the ectoplasmic specializations, neither at the basal nor at the apical sites, in the seminiferous epithelium. In particular, vezatin does not colocalize with espin and myosin VIIa, two molecular markers of the ectoplasmic specialization. In differentiating spermatids, ultrastructural data indicate that vezatin localizes in the acrosome. In epididymal sperm, vezatin localizes also to the outer acrosomal membrane. Considering its developmental and molecular characteristics, vezatin may be involved in the assembly/stability of this spermatic membrane.


Mechanisms of Development | 2007

Conditional knock-out reveals that zygotic vezatin-null mouse embryos die at implantation

Vincent Hyenne; Céline Souilhol; Michel Cohen-Tannoudji; Silvia Cereghini; Christine Petit; Francina Langa; Bernard Maro; Marie-Christine Simmler

Vezatin, a protein associated to adherens junctions in epithelial cells, is already expressed in mouse oocytes and during pre-implantation development. Using a floxed strategy to generate a vezatin-null allele, we show that the lack of zygotic vezatin is embryonic lethal, indicating that vezatin is an essential gene. Homozygous null embryos are able to elicit a decidual response but as early as day 6.0 post-coitum mutant implantation sites are devoid of embryonic structures. Mutant blastocysts are morphologically normal, but only half of them are able to hatch upon in vitro culture and the blastocyst outgrowths formed after 3.5 days in culture exhibit severe abnormalities, in particular disrupted intercellular adhesion and clear signs of cellular degeneration. Notably, the junctional proteins E-cadherin and beta-catenin are delocalized and not observed at the plasma membrane anymore. These in vitro observations reinforce the idea that homozygous vezatin-null mutants die at the time of implantation because of a defect in intercellular adhesion. Together these results indicate that the absence of zygotic vezatin is deleterious for the implantation process, most likely because cadherin-dependent intercellular adhesion is impaired in late blastocysts when the maternal vezatin is lost.


Reproduction, Fertility and Development | 2011

The conformation and activation of Fyn kinase in the oocyte determine its localisation to the spindle poles and cleavage furrow

Mattan Levi; Bernard Maro; Ruth Shalgi

Several lines of evidence imply the involvement of Fyn, a Src family kinase, in cell-cycle control and cytoskeleton organisation in somatic cells. By live cell confocal imaging of immunostained or cRNA-microinjected mouse oocytes at metaphase of the second meiotic division, membrane localisation of active and non-active Fyn was demonstrated. However, Fyn with a disrupted membrane-binding domain at its N-terminus was targeted to the cytoplasm and spindle in its non-active form and concentrated at the spindle poles when active. During metaphase exit, the amount of phosphorylated Fyn and of spindle-poles Fyn decreased and it started appearing at the membrane area of the cleavage furrow surrounding the spindle midzone, either asymmetrically during polar body II extrusion or symmetrically during mitosis. These results demonstrate that post-translational modifications of Fyn, probably palmitoylation, determine its localisation and function; localisation of de-palmitoylated active Fyn to the spindle poles is involved in spindle pole integrity during metaphase, whereas the localisation of N-terminus palmitoylated Fyn at the membrane near the cleavage furrow indicates its participation in furrow ingression during cytokinesis.


Developmental Biology | 2005

Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction

Stéphanie Vinot; Tran Le; Shigeo Ohno; Tony Pawson; Bernard Maro; Sophie Louvet-Vallée

Collaboration


Dive into the Bernard Maro's collaboration.

Top Co-Authors

Avatar

Sophie Louvet-Vallée

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Dard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphane Brunet

Pierre-and-Marie-Curie University

View shared research outputs
Top Co-Authors

Avatar

Shigeo Ohno

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge