Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Monsarrat is active.

Publication


Featured researches published by Bernard Monsarrat.


Immunity | 2000

Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells.

Sandra Morel; Frédéric Lévy; Odile Burlet-Schiltz; Francis Brasseur; Michael Probst-Kepper; Anne-Lise Peitrequin; Bernard Monsarrat; Robert Van Velthoven; Jean-Charles Cerottini; Thierry Boon; Jean Edouard Gairin; Benoît Van den Eynde

By stimulating human lymphocytes with an autologous renal carcinoma, we obtained CTL recognizing an antigen derived from a novel, ubiquitous protein. The CTL failed to lyse autologous EBV-transformed B cells, even though the latter express the protein. This is due to the presence in these cells of immunoproteasomes, which, unlike standard proteasomes, cannot produce the antigenic peptide. We show that dendritic cells also carry immunoproteasomes and fail to present this antigen. This may explain why the relevant CTL escape thymic deletion and are not regularly activated in the periphery. Lack of cleavage by the immunoproteasome was also observed for melanoma differentiation antigen Melan-A26-35/HLA-A2, currently used for antitumoral vaccination. For immunization with such antigens, proteins should be less suitable than peptides, which do not require proteasome digestion in dendritic cells.


Molecular & Cellular Proteomics | 2008

Urine in Clinical Proteomics

Stéphane Decramer; Anne Gonzalez de Peredo; Benjamin Breuil; Harald Mischak; Bernard Monsarrat; Jean-Loup Bascands; Joost P. Schanstra

Urine has become one of the most attractive biofluids in clinical proteomics as it can be obtained non-invasively in large quantities and is stable compared with other biofluids. The urinary proteome has been studied by almost any proteomics technology, but mass spectrometry-based urinary protein and peptide profiling has emerged as most suitable for clinical application. After a period of descriptive urinary proteomics the field is moving out of the discovery phase into an era of validation of urinary biomarkers in larger prospective studies. Although mainly due to the site of production of urine, the majority of these studies apply to the kidney and the urinary tract, but recent data show that analysis of the urinary proteome can also be highly informative on non-urogenital diseases and used in their classification. Despite this progress in urinary biomarker discovery, the contribution of urinary proteomics to the understanding of the pathophysiology of disease upon analysis of the urinary proteome is still modest mainly because of problems associated to sequence identification of the biomarkers. Until now, research has focused on the highly abundant urinary proteins and peptides, but analysis of the less abundant and naturally existing urinary proteins and peptides still remains a challenge. In conclusion, urine has evolved as one of the most attractive body fluids in clinical proteomics with potentially a rapid application in the clinic.


Proceedings of the National Academy of Sciences of the United States of America | 2012

IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G

Emma Lefrancais; Stéphane Roga; Violette Gautier; Anne Gonzalez-de-Peredo; Bernard Monsarrat; Jean-Philippe Girard; Corinne Cayrol

Interleukin-33 (IL-33) (NF-HEV) is a chromatin-associated nuclear cytokine from the IL-1 family, which has been linked to important diseases, including asthma, rheumatoid arthritis, ulcerative colitis, and cardiovascular diseases. IL-33 signals through the ST2 receptor and drives cytokine production in type 2 innate lymphoid cells (ILCs) (natural helper cells, nuocytes), T-helper (Th)2 lymphocytes, mast cells, basophils, eosinophils, invariant natural killer T (iNKT), and natural killer (NK) cells. We and others recently reported that, unlike IL-1β and IL-18, full-length IL-33 is biologically active independently of caspase-1 cleavage and that processing by caspases results in IL-33 inactivation. We suggested that IL-33, which is released upon cellular damage, may function as an endogenous danger signal or alarmin, similar to IL-1α or high-mobility group box 1 protein (HMGB1). Here, we investigated the possibility that IL-33 activity may be regulated by proteases released during inflammation. Using a combination of in vitro and in vivo approaches, we demonstrate that neutrophil serine proteases cathepsin G and elastase can cleave full-length human IL-331–270 and generate mature forms IL-3395–270, IL-3399–270, and IL-33109–270. These forms are produced by activated human neutrophils ex vivo, are biologically active in vivo, and have a ∼10-fold higher activity than full-length IL-33 in cellular assays. Murine IL-33 is also cleaved by neutrophil cathepsin G and elastase, and both full-length and cleaved endogenous IL-33 could be detected in the bronchoalveolar lavage fluid in an in vivo model of acute lung injury associated with neutrophil infiltration. We propose that the inflammatory microenvironment may exacerbate disease-associated functions of IL-33 through the generation of highly active mature forms.


Journal of Lipid Research | 2010

Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins

Caroline Subra; David Grand; Karine Laulagnier; Alexandre Stella; Gérard Lambeau; Michael R. Paillasse; Philippe de Medina; Bernard Monsarrat; Bertrand Perret; Sandrine Silvente-Poirot; Marc Poirot; Michel Record

Exosomes are bioactive vesicles released from multivesicular bodies (MVB) by intact cells and participate in intercellular signaling. We investigated the presence of lipid-related proteins and bioactive lipids in RBL-2H3 exosomes. Besides a phospholipid scramblase and a fatty acid binding protein, the exosomes contained the whole set of phospholipases (A2, C, and D) together with interacting proteins such as aldolase A and Hsp 70. They also contained the phospholipase D (PLD) / phosphatidate phosphatase 1 (PAP1) pathway leading to the formation of diglycerides. RBL-2H3 exosomes also carried members of the three phospholipase A2 classes: the calcium-dependent cPLA2-IVA, the calcium-independent iPLA2-VIA, and the secreted sPLA2-IIA and V. Remarkably, almost all members of the Ras GTPase superfamily were present, and incubation of exosomes with GTPγS triggered activation of phospholipase A2 (PLA2)and PLD2. A large panel of free fatty acids, including arachidonic acid (AA) and derivatives such as prostaglandin E2 (PGE2) and 15-deoxy-Δ12,14-prostaglandinJ2 (15-d PGJ2), were detected. We observed that the exosomes were internalized by resting and activated RBL cells and that they accumulated in an endosomal compartment. Endosomal concentrations were in the micromolar range for prostaglandins; i.e., concentrations able to trigger prostaglandin-dependent biological responses. Therefore exosomes are carriers of GTP-activatable phospholipases and lipid mediators from cell to cell.


Journal of Cell Science | 2004

Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2–M transition

Stéphanie Dutertre; Martine Cazales; Muriel Quaranta; Carine Froment; Valerie Trabut; Christine Dozier; Gladys Mirey; Jean-Pierre Bouché; Nathalie Theis-Febvre; Estelle Schmitt; Bernard Monsarrat; Claude Prigent; Bernard Ducommun

Aurora-A protein kinase, which is the product of an oncogene, is required for the assembly of a functional mitotic apparatus and the regulation of cell ploidy. Overexpression of Aurora-A in tumour cells has been correlated with cancer susceptibility and poor prognosis. Aurora-A activity is required for the recruitment of CDK1-cyclin B1 to the centrosome prior to its activation and the commitment of the cell to mitosis. In this report, we demonstrate that the CDC25B phosphatase, an activator of cyclin dependent kinases at mitosis, is phosphorylated both in vitro and in vivo by Aurora-A on serine 353 and that this phosphorylated form of CDC25B is located at the centrosome during mitosis. Knockdown experiments by RNAi confirm that the centrosome phosphorylation of CDC25B on S353 depends on Aurora-A kinase. Microinjection of antibodies against phosphorylated S353 results in a mitotic delay whilst overexpression of a S353 phosphomimetic mutant enhances the mitotic inducing effect of CDC25B. Our results demonstrate that Aurora-A phosphorylates CDC25B in vivo at the centrosome during mitosis. This phosphorylation might locally participate in the control of the onset of mitosis. These findings re-emphasise the role of the centrosome as a functional integrator of the pathways contributing to the triggering of mitosis.


Molecular & Cellular Proteomics | 2008

Extensive Analysis of the Cytoplasmic Proteome of Human Erythrocytes Using the Peptide Ligand Library Technology and Advanced Mass Spectrometry

Florence Roux-Dalvai; Anne Gonzalez de Peredo; Carolina Simó; Luc Guerrier; David Bouyssié; Alberto Zanella; Attilio Citterio; Odile Burlet-Schiltz; Egisto Boschetti; Pier Giorgio Righetti; Bernard Monsarrat

The erythrocyte cytoplasmic proteome is composed of 98% hemoglobin; the remaining 2% is largely unexplored. Here we used a combinatorial library of hexameric peptides as a capturing agent to lower the signal of hemoglobin and amplify the signal of low to very low abundance proteins in the cytoplasm of human red blood cells (RBCs). Two types of hexapeptide library beads have been adopted: amino-terminal hexapeptide beads and beads in which the peptides have been further derivatized by carboxylation. The amplification of the signal of low abundance and suppression of the signal of high abundance species were fully demonstrated by two-dimensional gel maps and nano-LC-MSMS analysis. The effect of this new methodology on quantitative information also was explored. Moreover using this approach on an LTQ-Orbitrap mass spectrometer, we could identify with high confidence as many as 1578 proteins in the cytoplasmic fraction of a highly purified preparation of RBCs, allowing a deep exploration of the classical RBC pathways as well as the identification of unexpected minor proteins. In addition, we were able to detect the presence of eight different hemoglobin chains including embryonic and newly discovered globin chains. Thus, this extensive study provides a huge data set of proteins that are present in the RBC cytoplasm that may help to better understand the biology of this simplified cell and may open the way to further studies on blood pathologies using targeted approaches.


Proteomics Clinical Applications | 2010

Comprehensive human urine standards for comparability and standardization in clinical proteome analysis

Harald Mischak; Walter Kolch; Michalis Aivaliotis; David Bouyssié; Magali Court; Hassan Dihazi; Gry H. Dihazi; Julia Franke; Jérôme Garin; Anne Gonzalez de Peredo; Alexander Iphöfer; Lothar Jänsch; Chrystelle Lacroix; Manousos Makridakis; Christophe Masselon; Jochen Metzger; Bernard Monsarrat; Michal Mrug; Martin Norling; Jan Novak; Andreas Pich; Andrew R. Pitt; Erik Bongcam-Rudloff; Justyna Siwy; Hitoshi Suzuki; Visith Thongboonkerd; Li-Shun Wang; Jerome Zoidakis; Petra Zürbig; Joost P. Schanstra

Purpose: Urine proteomics is emerging as a powerful tool for biomarker discovery. The purpose of this study is the development of a well‐characterized “real life” sample that can be used as reference standard in urine clinical proteomics studies.


Journal of Immunology | 2006

Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation.

Jacques Chapiro; Stéphane Claverol; Fanny Piette; Wenbin Ma; Vincent Stroobant; Benoît Guillaume; Jean-Edouard Gairin; Sandra Morel; Odile Burlet-Schiltz; Bernard Monsarrat; Thierry Boon; Benoît Van den Eynde

The immunoproteasome (IP) is usually viewed as favoring the production of antigenic peptides presented by MHC class I molecules, mainly because of its higher cleavage activity after hydrophobic residues, referred to as the chymotrypsin-like activity. However, some peptides have been found to be better produced by the standard proteasome. The mechanism of this differential processing has not been described. By studying the processing of three tumor antigenic peptides of clinical interest, we demonstrate that their differential processing mainly results from differences in the efficiency of internal cleavages by the two proteasome types. Peptide gp100209–217 (ITDQVPSFV) and peptide tyrosinase369–377 (YMDGTMSQV) are destroyed by the IP, which cleaves after an internal hydrophobic residue. Conversely, peptide MAGE-C2336–344 (ALKDVEERV) is destroyed by the standard proteasome by internal cleavage after an acidic residue, in line with its higher postacidic activity. These results indicate that the IP may destroy some antigenic peptides due to its higher chymotrypsin-like activity, rather than favor their production. They also suggest that the sets of peptides produced by the two proteasome types differ more than expected. Considering that mature dendritic cells mainly contain IPs, our results have implications for the design of immunotherapy strategies.


Molecular & Cellular Proteomics | 2010

In-depth Exploration of Cerebrospinal Fluid by Combining Peptide Ligand Library Treatment and Label-free Protein Quantification

Emmanuelle Mouton-Barbosa; Florence Roux-Dalvai; David Bouyssié; François Berger; Eric Schmidt; Pier Giorgio Righetti; Luc Guerrier; Egisto Boschetti; Odile Burlet-Schiltz; Bernard Monsarrat; Anne Gonzalez de Peredo

Cerebrospinal fluid (CSF) is the biological fluid in closest contact with the brain and thus contains proteins of neural cell origin. Hence, CSF is a biochemical window into the brain and is particularly attractive for the search for biomarkers of neurological diseases. However, as in the case of other biological fluids, one of the main analytical challenges in proteomic characterization of the CSF is the very wide concentration range of proteins, largely exceeding the dynamic range of current analytical approaches. Here, we used the combinatorial peptide ligand library technology (ProteoMiner) to reduce the dynamic range of protein concentration in CSF and unmask previously undetected proteins by nano-LC-MS/MS analysis on an LTQ-Orbitrap mass spectrometer. This method was first applied on a large pool of CSF from different sources with the aim to better characterize the protein content of this fluid, especially for the low abundance components. We were able to identify 1212 proteins in CSF, and among these, 745 were only detected after peptide library treatment. However, additional difficulties for clinical studies of CSF are the low protein concentration of this fluid and the low volumes typically obtained after lumbar puncture, precluding the conventional use of ProteoMiner with large volume columns for treatment of patient samples. The method has thus been optimized to be compatible with low volume samples. We could show that the treatment is still efficient with this miniaturized protocol and that the dynamic range of protein concentration is actually reduced even with small amounts of beads, leading to an increase of more than 100% of the number of identified proteins in one LC-MS/MS run. Moreover, using a dedicated bioinformatics analytical work flow, we found that the method is reproducible and applicable for label-free quantification of series of samples processed in parallel.


Molecular and Cellular Biology | 2005

The Splicing ATPase Prp43p Is a Component of Multiple Preribosomal Particles

Simon Lebaron; Carine Froment; Micheline Fromont-Racine; Jean-Christophe Rain; Bernard Monsarrat; Michèle Caizergues-Ferrer; Yves Henry

ABSTRACT Prp43p is a putative helicase of the DEAH family which is required for the release of the lariat intron from the spliceosome. Prp43p could also play a role in ribosome synthesis, since it accumulates in the nucleolus. Consistent with this hypothesis, we find that depletion of Prp43p leads to accumulation of 35S pre-rRNA and strongly reduces levels of all downstream pre-rRNA processing intermediates. As a result, the steady-state levels of mature rRNAs are greatly diminished following Prp43p depletion. We present data arguing that such effects are unlikely to be solely due to splicing defects. Moreover, we demonstrate by a combination of a comprehensive two-hybrid screen, tandem-affinity purification followed by mass spectrometry, and Northern analyses that Prp43p is associated with 90S, pre-60S, and pre-40S ribosomal particles. Prp43p seems preferentially associated with Pfa1p, a novel specific component of pre-40S ribosomal particles. In addition, Prp43p interacts with components of the RNA polymerase I (Pol I) transcription machinery and with mature 18S and 25S rRNAs. Hence, Prp43p might be delivered to nascent 90S ribosomal particles during pre-rRNA transcription and remain associated with preribosomal particles until their final maturation steps in the cytoplasm. Our data also suggest that the ATPase activity of Prp43p is required for early steps of pre-rRNA processing and normal accumulation of mature rRNAs.

Collaboration


Dive into the Bernard Monsarrat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carine Froment

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Gonzalez de Peredo

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karima Chaoui

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Wright

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Edouard Gairin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alexandre Stella

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge