Bernard Moussian
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernard Moussian.
Scientific Reports | 2016
Zhitao Yu; Xueyao Zhang; Yiwen Wang; Bernard Moussian; Kun Yan Zhu; Sheng Li; Enbo Ma; Jianzhen Zhang
Cytochrome P450 superfamily proteins play important roles in detoxification of xenobiotics and during physiological and developmental processes. To contribute to our understanding of this large gene family in insects, we have investigated the function of the cytochrome P450 gene LmCYP4G102 in the migratory locust Locusta migratoria. Suppression of LmCYP4G102 expression by RNA interference (RNAi) does not interfere with moulting but causes rapid loss of body weight - probably due to massive loss of water, and death soon after moulting. Accordingly, maintaining these animals at 90% relative humidity prevented lethality. Consistently, RNAi against LmCYP4G102 provoked a decrease in the content of cuticular alkanes, which as an important fraction of cuticular hydrocarbons have been shown to confer desiccation resistance. In addition, the cuticle of LmCYP4G102-knockdown locusts was fragile and easier deformable than in control animals. Presumably, this phenotype is due to decreased amounts of cuticular water that is reported to modulate cuticle mechanics. Interestingly, LmCYP4G102 was not expressed in the epidermis that produces the cuticle but in the sub-epdiermal hepatocyte-like oenocytes. Together, our results suggest that the oenocyte-specific LmCYP4G102 plays a critical role in the synthesis of cuticular hydrocarbons, which are important for cuticle waterproofing and mechanical stability in L. migratoria
Proceedings of the Royal Society B: Biological Sciences | 2016
Yiwen Wang; Zhitao Yu; Jianzhen Zhang; Bernard Moussian
Cuticular hydrocarbons (CHCs) play a critical role in the establishment of the waterproof barrier that prevents dehydration and wetting in insects. While rich data are available on CHC composition in different species, we know little about their distribution and organization. Here, we report on our studies of the surface barrier of the fruit fly Drosophila melanogaster applying a newly developed Eosin Y staining method. The inert Eosin Y penetrates different regions of the adult body at distinct temperatures. By contrast, the larval body takes up the dye rather uniformly and gradually with increasing temperature. Cooling down specimens to 25°C after incubation at higher temperatures restores impermeability. Eosin Y penetration is also sensitive to lipid solvents such as chloroform indicating that permeability depends on CHCs. As in D. melanogaster adult flies, Eosin Y penetration is regionalized in Tenebrio molitor larvae, whereas it is not in Locusta migratoria nymphs. Regionalization of the fly surface implies tissue-specific variation of the genetic or biochemical programmes of CHC production and deposition. The Eosin Y-based map of CHC distribution may serve to identify the respective factors that are activated to accommodate ecological needs.
Journal of Biological Chemistry | 2016
Rongrong Yu; Weimin Liu; Daqi Li; Xiaoming Zhao; Guowei Ding; Min Zhang; Enbo Ma; Kun Yan Zhu; Sheng Li; Bernard Moussian; Jianzhen Zhang
In the three-dimensional extracellular matrix of the insect cuticle, horizontally aligned microfibrils composed of the polysaccharide chitin and associated proteins are stacked either parallel to each other or helicoidally. The underlying molecular mechanisms that implement differential chitin organization are largely unknown. To learn more about cuticle organization, we sought to study the role of chitin deacetylases (CDA) in this process. In the body cuticle of nymphs of the migratory locust Locusta migratoria, helicoidal chitin organization is changed to an organization with unidirectional microfibril orientation when LmCDA2 expression is knocked down by RNA interference. In addition, the LmCDA2-deficient cuticle is less compact suggesting that LmCDA2 is needed for chitin packaging. Animals with reduced LmCDA2 activity die at molting, underlining that correct chitin organization is essential for survival. Interestingly, we find that LmCDA2 localizes only to the initially produced chitin microfibrils that constitute the apical site of the chitin stack. Based on our data, we hypothesize that LmCDA2-mediated chitin deacetylation at the beginning of chitin production is a decisive reaction that triggers helicoidal arrangement of subsequently assembled chitin-protein microfibrils.
Biology Open | 2015
Yiwen Wang; Tina Cruz; Bernard Moussian
ABSTRACT At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them) are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila. Summary: During embryogenesis in Drosophila melanogaster, without involving the nervous system, somatic muscles control terminal differentiation of the airway system by stimulating gas-filling before hatching.
European Journal of Cell Biology | 2017
Renata Zuber; Michaela Norum; Yiwen Wang; Kathrin Oehl; Nicole Gehring; Davide Accardi; Slawomir Bartozsewski; Jürgen Berger; Matthias Flötenmeyer; Bernard Moussian
Lipids in extracellular matrices (ECM) contribute to barrier function and stability of epithelial tissues such as the pulmonary alveoli and the skin. In insects, skin waterproofness depends on the outermost layer of the extracellular cuticle termed envelope that contains cuticulin, an unidentified water-repellent complex molecule composed of proteins, lipids and catecholamines. Based on live-imaging analyses of fruit fly larvae, we find that initially envelope units are assembled within putative vesicles harbouring the ABC transporter Snu and the extracellular protein Snsl. In a second step, the content of these vesicles is distributed to cuticular lipid-transporting nanotubes named pore canals and to the cuticle surface in dependence of Snu function. Consistently, the surface of snu and snsl mutant larvae is depleted from lipids and cuticulin. By consequence, these animals suffer uncontrolled water loss and penetration of xenobiotics. Our data allude to a two-step model of envelope i.e. barrier formation. The proposed mechanism in principle parallels the events occurring during differentiation of the lipid-based ECM by keratinocytes in the vertebrate skin suggesting establishment of analogous mechanisms of skin barrier formation in vertebrates and invertebrates.
Developmental Biology | 2018
Yiwen Wang; Jürgen Berger; Bernard Moussian
Terminal differentiation of an organ is the last step in development that enables the organism to survive in the outside world after birth. Terminal differentiation of the insect tracheae that ends with filling the tubular network with gas is not fully understood at the tissue level. Here, we demonstrate that yet unidentified valves at the end of the tracheal system of the fruit fly Drosophila melanogaster embryo are important elements allowing terminal differentiation of this organ. Formation of these valves depends on the function of the zona pellucida protein Trynity (Tyn). The tracheae of tyn mutant embryos that lack these structures do not fill with gas. Additionally, external material penetrates into the tracheal tubes indicating that the tyn spiracles are permanently open. We conclude that the tracheal endings have to be closed to ensure gas-filling. We speculate that according to physical models closing of the tubular tracheal network provokes initial increase of the internal hydrostatic pressure necessary for gas generation through cavitation when the pressure is subsequently decreased.
Archives of Insect Biochemistry and Physiology | 2018
Subbaratnam Muthukrishnan; Yasuyuki Arakane; Qing Yang; Chuan-Xi Zhang; Jianzhen Zhang; Wenqing Zhang; Bernard Moussian
This microreview stems from the Second Symposium on Insect Molecular Toxicology and Chitin Metabolism held at Shanxi University in Taiyuan, China (June 27 to 30, 2017) at the institute for Applied Biology headed by Professor Enbo Ma and Professor Jianzhen Zhang.
bioRxiv | 2017
Renata Zuber; Michaela Norum; Yiwen Wang; Kathrin Oehl; Davide Accardi; Slawomir Bartoszewski; Nicole Gehring; Jürgen Berger; Matthias Flötenmeyer; Bernard Moussian
Lipids in extracellular matrices (ECM) contribute to barrier function and stability of epithelial tissues such as the pulmonary alveoli and the skin. In insects, skin waterproofness depends on the outermost layer of the extracellular cuticle termed envelope that contains cuticulin, an unidentified water-repellent complex molecule composed of proteins, lipids and catecholamines. Based on live-imaging analyses of fruit fly larvae, we find that initially envelope units are assembled within vesicles harbouring the ABC transporter Snu and the extracellular protein Snsl. In a second step, the content of these vesicles is distributed to cuticular lipid-transporting nanotubes named pore canals and to the cuticle surface in dependence of Snu function. Consistently, the surface of snu and snsl mutant larvae is depleted from lipids and cuticulin. By consequence, these animals suffer uncontrolled water loss and penetration of xenobiotics. Our data allude to a two-step model of envelope i.e. barrier formation. The proposed mechanism in principle parallels the events occurring during differentiation of the lipid-based ECM by keratinocytes in the vertebrate skin suggesting establishment of analogous mechanisms of skin barrier formation in vertebrates and invertebrates.
EMBO Reports | 2016
Bernard Moussian
The peer‐review system for validating and judging the quality of scientific discoveries has come under attack during the past years. Daniel Fisher and Nikolaos Parisis reckoned that “publishing has become the most discouraging and frustrating part of research” [1] because the amount of data needed to write a publishable paper has drastically increased “during the past decades” owing to increasing demands by reviewers and editors. Ultimately, they state, this hampers scientific advance and harms the career options of young scientists. In his comment on their essay, Haitham Sobhy takes the same line and criticizes that the focus on journal impact factor (JIF) and number of citations to measure scientific quality may ruin or at least negatively …
Insect Biochemistry and Molecular Biology | 2018
Xiaoming Zhao; Zhongyu Qin; Weimin Liu; Xiaojian Liu; Bernard Moussian; Enbo Ma; Sheng Li; Jianzhen Zhang