Bernard Pineau
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernard Pineau.
Journal of Biological Chemistry | 2008
Bernard Pineau; Ouardia Layoune; Antoine Danon; Rosine De Paepe
Mitochondrial NADH-ubiquinone oxidoreductase (complex I) is the largest enzyme of the oxidative phosphorylation system, with subunits located at the matrix and membrane domains. In plants, holocomplex I is composed of more than 40 subunits, 9 of which are encoded by the mitochondrial genome (NAD subunits). In Nicotiana sylvestris, a minor 800-kDa subcomplex containing subunits of both domains and displaying NADH dehydrogenase activity is detectable. The NMS1 mutant lacking the membrane arm NAD4 subunit and the CMSII mutant lacking the peripheral NAD7 subunit are both devoid of the holoenzyme. In contrast to CMSII, the 800-kDa subcomplex is present in NMS1 mitochondria, indicating that it could represent an assembly intermediate lacking the distal part of the membrane arm. l-galactono-1,4-lactone dehydrogenase (GLDH), the last enzyme in the plant ascorbate biosynthesis pathway, is associated with the 800-kDa subcomplex but not with the holocomplex. To investigate possible relationships between GLDH and complex I assembly, we characterized an Arabidopsis thaliana gldh insertion mutant. Homozygous gldh mutant plants were not viable in the absence of ascorbate supplementation. Analysis of crude membrane extracts by blue native and two-dimensional SDS-PAGE showed that complex I accumulation was strongly prevented in leaves and roots of Atgldh plants, whereas other respiratory complexes were found in normal amounts. Our results demonstrate the role of plant GLDH in both ascorbate biosynthesis and complex I accumulation.
The Plant Cell | 2013
Bernard Pineau; Mickael Bourge; Jessica Marion; Caroline Mauve; Françoise Gilard; Lilly Maneta-Peyret; Patrick Moreau; Béatrice Satiat-Jeunemaitre; Spencer C. Brown; Rosine De Paepe; Antoine Danon
CARDIOLIPIN SYNTHASE (CLS) catalyzes the synthesis of cardiolipin, the signature phospholipid of the mitochondrial inner membrane. Through characterization of a cls mutant in Arabidopsis, this study shows that CLS is crucial for correct mitochondrial function and development in Arabidopsis under both optimal and stress conditions. Cardiolipin (CL) is the signature phospholipid of the mitochondrial inner membrane. In animals and yeast (Saccharomyces cerevisiae), CL depletion affects the stability of respiratory supercomplexes and is thus crucial to the energy metabolism of obligate aerobes. In eukaryotes, the last step of CL synthesis is catalyzed by CARDIOLIPIN SYNTHASE (CLS), encoded by a single-copy gene. Here, we characterize a cls mutant in Arabidopsis thaliana, which is devoid of CL. In contrast to yeast cls, where development is little affected, Arabidopsis cls seedlings are slow developing under short-day conditions in vitro and die if they are transferred to long-day (LD) conditions. However, when transferred to soil under LD conditions under low light, cls plants can reach the flowering stage, but they are not fertile. The cls mitochondria display abnormal ultrastructure and reduced content of respiratory complex I/complex III supercomplexes. The marked accumulation of tricarboxylic acid cycle derivatives and amino acids demonstrates mitochondrial dysfunction. Mitochondrial and chloroplastic antioxidant transcripts are overexpressed in cls leaves, and cls protoplasts are more sensitive to programmed cell death effectors, UV light, and heat shock. Our results show that CLS is crucial for correct mitochondrial function and development in Arabidopsis under both optimal and stress conditions.
Planta | 1999
Stéphane D. Lemaire; Mariana Stein; Emmanuelle Issakidis-Bourguet; Eliane Keryer; Vanina Benoit; Bernard Pineau; Catherine Gérard-Hirne; Myroslawa Miginiac-Maslow; Jean-Pierre Jacquot
Abstract. The biochemical properties of the ferredoxin/thioredoxin transduction pathway regulating the activity of key carbon-fixation enzymes through post-translational modifications are well characterized but little is known about the regulation of the different genes. In the present study, we investigated in Chlamydomonas reinhardtii the regulation of the expression of ferredoxin, thioredoxin m, ferredoxin-NADP reductase, phosphoribulokinase, as well as that of cytosolic thioredoxin h, the function of which is still largely unknown. The effects of light, the circadian clock and active cell division were investigated by northern blotting. The five genes were found to be regulated by light and the circadian clock but with different kinetics and amplitudes. This leads for the first time to the proposal that an extra-chloroplastic thioredoxin is possibly implicated in light and/or circadian-related processes. An interplay between several light-transduction pathways in controlling the expression of the genes is suggested by the expression studies and the theoretical analysis of the promoters.
Plant Physiology | 1993
Bernard Pineau; C. Gerard-Hirne; Roland Douce; Jacques Joyard
The chlorophyll precursors protochlorophyllide and chlorophyllide were identified in purified envelope membranes from spinach (Spinacia oleracea) chloroplasts. This was shown after pigment separation by high performance liquid chromatography (HPLC) using specific fluorescence detection for these compounds. Protochlorophyllide and chlorophyllide concentrations in envelope membranes were in the range of 0.1 to 1.5 nmol/mg protein. Chlorophyll content of the envelope membranes was extremely low (0.3 nmol chlorophyll a/mg protein), but the molar ratios of protochlorophyllide and chlorophyllide to chlorophyll were 100 to 1000 times higher in envelope membranes than in thylakoid membranes. Therefore, envelope tetrapyrrolic pigments consist in large part (approximately one-half) of nonphytylated molecules, whereas only 0.1% of the pigments in thylakoids are nonphytylated molecules. Clear-cut separation of protochlorophyllide and chlorophyllide by HPLC allowed us to confirm the presence of a slight protochlorophyllide reductase activity in isolated envelope membranes from fully developed spinach chloroplasts. The enzyme was active only when envelope membranes were illuminated in the presence of NADPH.
Planta | 1982
Bernard Pineau
Light induction of chloroplast development in Euglena leads to quantitative changes in the protein composition of the soluble cell part. One major part of these is the observed accumulation of ribulose-1.5-bisphosphate carboxylase/oxygenase (RuBPCase) enzyme (EC 4.1.1.39). As measured by immunoelectrophoresis, a small amount of RuBPCase (about 10-6 pmol) is present in a dark-grown cell, whereas a greening cell (72h) contains 10–20 pmol enzyme. Both the cytoplasmic and chloroplastic translation inhibitors, cycloheximide and spectinomycin, have a strong inhibitory effect on the synthesis of the enzyme throughout the greening process of Euglena cells. Electrophoretic and immunological analyses of the soluble phase prepared from etiolated or greening cells do not show the presence of free subunits of the enzyme. For each antibiotic-treated greening cell, the syntheses of both subunits are blocked. Our data indicate that tight reciprocal control between the syntheses of the two classes of subunits occurs in Euglena. In particular, the RuBPCase small subunit synthesis in greening Euglena seems more dependent on the protein synthesis activity of the chloroplast than the syntheses of other stromal proteins from cytoplasmic origin.
Planta | 1981
Danielle Laval-Martin; Jack Farineau; Bernard Pineau; Régis Calvayrac
Phosphoenolpyruvate carboxykinase activity decreases when Euglena gracilis Z and ZR undergo light-induced chloroplast development in batch “resting” medium lacking utilizable organic carbon and CO2. This enzyme is present in heterotrophically grown cells (Briand et al. 1981) and assures gluconeogenesis. It was consistently more active in strain ZR. Decreased carboxykinase activities were accompanied by parallel increases in the activities of ribulose bisphosphate carboxylase and phosphoenolpyruvate carboxylase. The rates of O2 evolution in light were much lower than those of CO2 fixed simultaneously. The incorporation of 14CO2 into early C-4 dicarboxylic acids was higher in green cells than in etiolated cells, and it was even higher in green cells assayed in light in the presence of (DCMU). A hypothesis has been proposed, according to which there is a possible cooperation of phosphoenolpyruvate carboxylase in photosynthetic CO2 fixation, especially under conditions of limiting CO2.High temperatures (34° C) depress carboxylation enzyme activities to a greater extent than that of the carboxykinase without a great effect on cellular chlorophyll content. In the presence of 25 μm DCMU, however, chlorophyll accumulation is reduced without any detectable changes in enzyme activities in the Z strain. The ZR strain displayed its characteristic resistance to DCMU.
Plant Physiology | 2017
Pierre Pétriacq; Linda de Bont; Lucie Genestout; Jingfang Hao; Constance Laureau; Igor Florez-Sarasa; Touhami Rzigui; Guillaume Queval; Françoise Gilard; Caroline Mauve; Florence Guérard; Marlène Lamothe-Sibold; Jessica Marion; Chantal Fresneau; Spencer C. Brown; Antoine Danon; Anja Krieger-Liszkay; Richard Berthomé; Miquel Ribas-Carbo; Guillaume Tcherkez; Gabriel Cornic; Bernard Pineau; Bertrand Gakière; Rosine De Paepe
Respiratory complex I mutants do not properly acclimate to long-day conditions in Arabidopsis, demonstrating the importance of mitochondria for the photoperiod response. Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit and the previously characterized ndufs4 CI mutant. In the long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Columbia-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher alternative oxidase content/activity, and displayed a growth retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than in ndufs8.1 ndufs8.2 under the short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD compared with the wild type. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the wild type. The typical LD acclimation of carbon and nitrogen assimilation as well as redox-related parameters was not observed in ndufs8.1 ndufs8. Similarly, NAD(H) content, which was higher in the SD condition in both mutants than in Columbia-0, did not adjust under LD. We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of CI mutants and photoperiod acclimation in Arabidopsis.
Archive | 1992
Jacques Joyard; Maryse A. Block; Bernard Pineau; Roland Douce
One of the most characteristic features of a plant cell is the existence of plastids representing a whole family of interrelated organelles (Kirk & Tilney-Bassett, 1978). Meristematic cells contain small undiffe-rentiated plastids or proplastids, which have little internal structure apart from a few flattened sacs which occasionally have continuity with the inner envelope. They ensure the continuance of plastids within a species from generation to generation and are capable of considerable structural and metabolic transformations which give rise to more mature plastids. During root cell differentiation, proplastids develop mostly into amyloplasts, which are storage plastids containing large starch grains. During leaf cell differentiation in the presence of light, proplastids develop into chloroplasts, which are the site of photosynthesis, but in the absence of light, they develop into etioplasts, containing a crystal-like structure called the prolamellar body. Etioplasts can then be transformed into chloroplasts upon illumination. Carotenoid-rich plastids, or chromoplasts, can develop from proplastids or chloroplasts during flower development, fruit ripening or senescence. Therefore, plastid differentiation within plant cells is both light- and tissue-specific, and mechanisms should exist that control nuclear and plastid gene expression.
FEBS Journal | 1993
Roberto Bassi; Bernard Pineau; Paola Dainese; Jürgen Marquardt
Journal of Biological Chemistry | 2005
Bernard Pineau; Chantal Mathieu; Catherine Gérard-Hirne; Rosine De Paepe; Philippe Chétrit