Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Thienpont is active.

Publication


Featured researches published by Bernard Thienpont.


Molecular Cell | 2012

The Dynamics of Genome-wide DNA Methylation Reprogramming in Mouse Primordial Germ Cells

Stefanie Seisenberger; Simon Andrews; Felix Krueger; Julia Arand; Joern Walter; Fátima Santos; Christian Popp; Bernard Thienpont; Wendy Dean; Wolf Reik

Summary Genome-wide DNA methylation reprogramming occurs in mouse primordial germ cells (PGCs) and preimplantation embryos, but the precise dynamics and biological outcomes are largely unknown. We have carried out whole-genome bisulfite sequencing (BS-Seq) and RNA-Seq across key stages from E6.5 epiblast to E16.5 PGCs. Global loss of methylation takes place during PGC expansion and migration with evidence for passive demethylation, but sequences that carry long-term epigenetic memory (imprints, CpG islands on the X chromosome, germline-specific genes) only become demethylated upon entry of PGCs into the gonads. The transcriptional profile of PGCs is tightly controlled despite global hypomethylation, with transient expression of the pluripotency network, suggesting that reprogramming and pluripotency are inextricably linked. Our results provide a framework for the understanding of the epigenetic ground state of pluripotency in the germline.


Nucleic Acids Research | 2006

Single-cell chromosomal imbalances detection by array CGH

Cédric Le Caignec; Claudia Spits; Karen Sermon; Martine De Rycke; Bernard Thienpont; Sophie Debrock; Catherine Staessen; Yves Moreau; Jean-Pierre Fryns; André Van Steirteghem; Inge Liebaers; Joris Vermeesch

Genomic imbalances are a major cause of constitutional and acquired disorders. Therefore, aneuploidy screening has become the cornerstone of preimplantation, prenatal and postnatal genetic diagnosis, as well as a routine aspect of the diagnostic workup of many acquired disorders. Recently, array comparative genomic hybridization (array CGH) has been introduced as a rapid and high-resolution method for the detection of both benign and disease-causing genomic copy-number variations. Until now, array CGH has been performed using a significant quantity of DNA derived from a pool of cells. Here, we present an array CGH method that accurately detects chromosomal imbalances from a single lymphoblast, fibroblast and blastomere within a single day. Trisomy 13, 18, 21 and monosomy X, as well as normal ploidy levels of all other chromosomes, were accurately determined from single fibroblasts. Moreover, we showed that a segmental deletion as small as 34 Mb could be detected. Finally, we demonstrated the possibility to detect aneuploidies in single blastomeres derived from preimplantation embryos. This technique offers new possibilities for genetic analysis of single cells in general and opens the route towards aneuploidy screening and detection of unbalanced translocations in preimplantation embryos in particular.


Nature | 2016

Tumour hypoxia causes DNA hypermethylation by reducing TET activity

Bernard Thienpont; Jessica Steinbacher; Hui Zhao; Flora D'Anna; Anna Kuchnio; Athanasios Ploumakis; Bart Ghesquière; Laurien Van Dyck; Bram Boeckx; Luc Schoonjans; Els Hermans; Frédéric Amant; Vessela N. Kristensen; Kian Peng Koh; Massimiliano Mazzone; Mathew L. Coleman; Thomas Carell; Peter Carmeliet; Diether Lambrechts

Hypermethylation of the promoters of tumour suppressor genes represses transcription of these genes, conferring growth advantages to cancer cells. How these changes arise is poorly understood. Here we show that the activity of oxygen-dependent ten-eleven translocation (TET) enzymes is reduced by tumour hypoxia in human and mouse cells. TET enzymes catalyse DNA demethylation through 5-methylcytosine oxidation. This reduction in activity occurs independently of hypoxia-associated alterations in TET expression, proliferation, metabolism, hypoxia-inducible factor activity or reactive oxygen species, and depends directly on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro. In patients, tumour suppressor gene promoters are markedly more methylated in hypoxic tumour tissue, independent of proliferation, stromal cell infiltration and tumour characteristics. Our data suggest that up to half of hypermethylation events are due to hypoxia, with these events conferring a selective advantage. Accordingly, increased hypoxia in mouse breast tumours increases hypermethylation, while restoration of tumour oxygenation abrogates this effect. Tumour hypoxia therefore acts as a novel regulator of DNA methylation.


Cancer Cell | 2016

Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy

Anna Rita Cantelmo; Lena Christin Conradi; Aleksandra Brajic; Jermaine Goveia; Joanna Kalucka; Andreas Pircher; Pallavi Chaturvedi; Johanna Hol; Bernard Thienpont; Laure Anne Teuwen; Sandra Schoors; Bram Boeckx; Joris Vriens; Anna Kuchnio; Koen Veys; Bert Cruys; Lise Finotto; Lucas Treps; Tor Espen Stav-Noraas; Francesco Bifari; Peter Stapor; Kim R. Kampen; Katrien De Bock; Guttorm Haraldsen; Luc Schoonjans; Ton J. Rabelink; Guy Eelen; Bart Ghesquière; Jalees Rehman; Diether Lambrechts

Abnormal tumor vessels promote metastasis and impair chemotherapy. Hence, tumor vessel normalization (TVN) is emerging as an anti-cancer treatment. Here, we show that tumor endothelial cells (ECs) have a hyper-glycolytic metabolism, shunting intermediates to nucleotide synthesis. EC haplo-deficiency or blockade of the glycolytic activator PFKFB3 did not affect tumor growth, but reduced cancer cell invasion, intravasation, and metastasis by normalizing tumor vessels, which improved vessel maturation and perfusion. Mechanistically, PFKFB3 inhibition tightened the vascular barrier by reducing VE-cadherin endocytosis in ECs, and rendering pericytes more quiescent and adhesive (via upregulation of N-cadherin) through glycolysis reduction; it also lowered the expression of cancer cell adhesion molecules in ECs by decreasing NF-κB signaling. PFKFB3-blockade treatment also improved chemotherapy of primary and metastatic tumors.


The Journal of Pediatrics | 2010

Array comparative genomic hybridization as a diagnostic tool for syndromic heart defects.

Jeroen Breckpot; Bernard Thienpont; Hilde Peeters; Thomy de Ravel; Amihood Singer; Maissa Rayyan; Karel Allegaert; Christine Vanhole; Benedicte Eyskens; Joris Vermeesch; Marc Gewillig; Koenraad Devriendt

OBJECTIVES To investigate different aspects of the introduction of array comparative genomic hybridization (aCGH) in clinical practice. STUDY DESIGN A total 150 patients with a syndromic congenital heart defect (CHD) of unknown cause were analyzed with aCGH at 1-Mb resolution. Twenty-nine of these patients, with normal results on 1Mb aCGH, underwent re-analysis with 244-K oligo-microarray. With a logistic regression model, we assessed the predictive value of patient characteristics for causal imbalance detection. On the basis of our earlier experience and the literature, we constructed an algorithm to evaluate the causality of copy number variants. RESULTS With 1-Mb aCGH, we detected 43 structural variants not listed as clinically neutral polymorphisms, 26 of which were considered to be causal. A systematic comparison of the clinical features of these 26 patients to the remaining 124 patients revealed dysmorphism as the only feature with a significant predictive value for reaching a diagnosis with 1-Mb aCGH. With higher resolution analysis in 29 patients, 75 variants not listed as clinically neutral polymorphisms were detected, 2 of which were considered to be causal. CONCLUSIONS Molecular karyotyping yields an etiological diagnosis in at least 18% of patients with a syndromic CHD. Higher resolution evaluation results in an increasing number of variants of unknown significance.


Nature | 2017

The role of fatty acid β-oxidation in lymphangiogenesis

Brian W. Wong; Xingwu Wang; Annalisa Zecchin; Bernard Thienpont; Joanna Kalucka; Melissa García-Caballero; Rindert Missiaen; Hongling Huang; Ulrike Bruning; Silvia Blacher; Stefan Vinckier; Jermaine Goveia; Marlen Knobloch; Hui Zhao; Cathrin Dierkes; Chenyan Shi; René Hägerling; Veronica Moral-Darde; Sabine Wyns; Martin Lippens; Sebastian Jessberger; Sarah-Maria Fendt; Aernout Luttun; Agnès Noël; Friedemann Kiefer; Bart Ghesquière; Lieve Moons; Luc Schoonjans; Mieke Dewerchin; Guy Eelen

Lymphatic vessels are lined by lymphatic endothelial cells (LECs), and are critical for health. However, the role of metabolism in lymphatic development has not yet been elucidated. Here we report that in transgenic mouse models, LEC-specific loss of CPT1A, a rate-controlling enzyme in fatty acid β-oxidation, impairs lymphatic development. LECs use fatty acid β-oxidation to proliferate and for epigenetic regulation of lymphatic marker expression during LEC differentiation. Mechanistically, the transcription factor PROX1 upregulates CPT1A expression, which increases acetyl coenzyme A production dependent on fatty acid β-oxidation. Acetyl coenzyme A is used by the histone acetyltransferase p300 to acetylate histones at lymphangiogenic genes. PROX1–p300 interaction facilitates preferential histone acetylation at PROX1-target genes. Through this metabolism-dependent mechanism, PROX1 mediates epigenetic changes that promote lymphangiogenesis. Notably, blockade of CPT1 enzymes inhibits injury-induced lymphangiogenesis, and replenishing acetyl coenzyme A by supplementing acetate rescues this process in vivo.


Cytogenetic and Genome Research | 2011

Challenges of interpreting copy number variation in syndromic and non-syndromic congenital heart defects.

Jeroen Breckpot; Bernard Thienpont; Yvonne Arens; Léon-Charles Tranchevent; Joris Vermeesch; Yves Moreau; Marc Gewillig; Koenraad Devriendt

Array comparative genomic hybridization (aCGH) has led to an increased detection of causal chromosomal imbalances in individuals with congenital heart defects (CHD). The introduction of aCGH as a diagnostic tool in a clinical cardiogenetic setting entails numerous challenges. Based on our own experience as well as those of others described in the literature, we outline the state of the art and attempt to answer a number of outstanding questions such as the detection frequency of causal imbalances in different patient populations, the added value of higher-resolution arrays, and the existence of predictive factors in syndromic cases. We introduce a step-by-step approach for clinical interpretation of copy number variants (CNV) detected in CHD, which is primarily based on gene content and overlap with known chromosomal syndromes, rather than on CNV inheritance and size. Based on this algorithm, we have reclassified the detected aberrations in aCGH studies for their causality for syndromic and non-syndromic CHD. From this literature overview, supplemented with own investigations in a cohort of 46 sporadic patients with severe non-syndromic CHD, it seems clear that the frequency of causal CNVs in non-syndromic CHD populations is lower than that in syndromic CNV populations (3.6 vs. 19%). Moreover, causal CNVs in non-syndromic CHD mostly involve imbalances with a moderate effect size and reduced penetrance, whereas the majority of causal imbalances in syndromic CHD consistently affects human development and significantly reduces reproductive fitness.


American Journal of Human Genetics | 2010

Haploinsufficiency of TAB2 causes congenital heart defects in humans

Bernard Thienpont; Litu Zhang; Alex V. Postma; Jeroen Breckpot; Léon-Charles Tranchevent; Peter Van Loo; Kjeld Møllgård; Niels Tommerup; Iben Bache; Zeynep Tümer; Klaartje van Engelen; Björn Menten; Geert Mortier; Darrel Waggoner; Marc Gewillig; Yves Moreau; Koen Devriendt; Lars Allan Larsen

Congenital heart defects (CHDs) are the most common major developmental anomalies and the most frequent cause for perinatal mortality, but their etiology remains often obscure. We identified a locus for CHDs on 6q24-q25. Genotype-phenotype correlations in 12 patients carrying a chromosomal deletion on 6q delineated a critical 850 kb region on 6q25.1 harboring five genes. Bioinformatics prioritization of candidate genes in this locus for a role in CHDs identified the TGF-beta-activated kinase 1/MAP3K7 binding protein 2 gene (TAB2) as the top-ranking candidate gene. A role for this candidate gene in cardiac development was further supported by its conserved expression in the developing human and zebrafish heart. Moreover, a critical, dosage-sensitive role during development was demonstrated by the cardiac defects observed upon titrated knockdown of tab2 expression in zebrafish embryos. To definitively confirm the role of this candidate gene in CHDs, we performed mutation analysis of TAB2 in 402 patients with a CHD, which revealed two evolutionarily conserved missense mutations. Finally, a balanced translocation was identified, cosegregating with familial CHD. Mapping of the breakpoints demonstrated that this translocation disrupts TAB2. Taken together, these data clearly demonstrate a role for TAB2 in human cardiac development.


PLOS ONE | 2009

Network Analysis of Differential Expression for the Identification of Disease-Causing Genes

Daniela Nitsch; Léon-Charles Tranchevent; Bernard Thienpont; Lieven Thorrez; Hilde Van Esch; Koenraad Devriendt; Yves Moreau

Genetic studies (in particular linkage and association studies) identify chromosomal regions involved in a disease or phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for biological validation. Recently, computational methods to identify (prioritize) the most promising candidates within a region have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few confirmed disease genes, fragmentary understanding of the biological cascades involved). We seek to overcome this limitation by replacing knowledge about the biological process by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on four monogenic diseases and successfully prioritize the known disease causing genes.


Journal of Medical Genetics | 2010

Duplications of the critical Rubinstein–Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome

Bernard Thienpont; Frédérique Béna; Jeroen Breckpot; Nicole Philip; Björn Menten; Hilde Van Esch; Emmanuel Scalais; Jessica Salamone; Chin-To Fong; Jennifer Kussmann; Dorothy K. Grange; Jerome L. Gorski; Farah R. Zahir; Siu Li Yong; Michael M Morris; Stefania Gimelli; Jean-Pierre Fryns; Geert Mortier; Jan M. Friedman; Laurent Villard; Armand Bottani; Joris Vermeesch; Sau Wai Cheung; Koen Devriendt

Background The introduction of molecular karyotyping technologies facilitated the identification of specific genetic disorders associated with imbalances of certain genomic regions. A detailed phenotypic delineation of interstitial 16p13.3 duplications is hampered by the scarcity of such patients. Objectives To delineate the phenotypic spectrum associated with interstitial 16p13.3 duplications, and perform a genotype-phenotype analysis. Results The present report describes the genotypic and phenotypic delineation of nine submicroscopic interstitial 16p13.3 duplications. The critically duplicated region encompasses a single gene, CREBBP, which is mutated or deleted in Rubinstein–Taybi syndrome. In 10 out of the 12 hitherto described probands, the duplication arose de novo. Conclusions Interstitial 16p13.3 duplications have a recognizable phenotype, characterized by normal to moderately retarded mental development, normal growth, mild arthrogryposis, frequently small and proximally implanted thumbs and characteristic facial features. Occasionally, developmental defects of the heart, genitalia, palate or the eyes are observed. The frequent de novo occurrence of 16p13.3 duplications demonstrates the reduced reproductive fitness associated with this genotype. Inheritance of the duplication from a clinically normal parent in two cases indicates that the associated phenotype is incompletely penetrant.

Collaboration


Dive into the Bernard Thienpont's collaboration.

Top Co-Authors

Avatar

Joris Vermeesch

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Koenraad Devriendt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jeroen Breckpot

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Diether Lambrechts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Marc Gewillig

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Fryns

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Yves Moreau

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koenraad Devriendt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Stein Aerts

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge