Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Weill is active.

Publication


Featured researches published by Bernard Weill.


International Journal of Cancer | 2006

Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo.

Jérôme Alexandre; Frédéric Batteux; Carole Nicco; Christiane Chéreau; Alexis Laurent; Loïc Guillevin; Bernard Weill; François Goldwasser

Intracellular events following paclitaxel binding to microtubules that lead to cell death remain poorly understood. Because reactive oxygen species (ROS) are involved in the cytotoxicity of anticancer agents acting through independent molecular targets, we explored the role of ROS in paclitaxel cytotoxicity. Within 15 min after in vitro exposure of A549 human lung cancer cells to paclitaxel, a concentration‐dependent intracellular increase in O°2− and H2O2 levels was detected by spectrofluorometry. Addition of N‐acetylcysteine (NAC) or glutathione, two H2O2 scavenger, induced a 4‐fold increase in paclitaxel IC50. Delaying NAC co‐incubation by 4 hr, resulted in a 3‐fold reduction in cell protection. The glutathione synthesis inhibitor, buthionine sulfoximine significantly increased paclitaxel cytotoxicity and H2O2 accumulation, but did not modify O°2− levels. Co‐incubation with diphenylene iodonium suggested that paclitaxel induced‐O°2− production was in part associated with increased activity of cytoplasmic NADPH oxidase. Concomitant treatment with inhibitors of caspases 3 and 8 increased cell survival but did not prevent the early accumulation of H2O2. To evaluate the role of ROS in paclitaxel antitumoral activity, mice were injected with LLC1 lung cancer cells and treated with paclitaxel i.p. and/or NAC. The antitumoral activity of paclitaxel in mice was abolished by NAC. In conclusion, the accumulation of H2O2 is an early and crucial step for paclitaxel‐induced cancer cell death before the commitment of the cells into apoptosis. These results suggest that ROS participate in vitro and in vivo to paclitaxel cytotoxicity.


American Journal of Pathology | 2009

Reactive Oxygen Species Controls Endometriosis Progression

Charlotte Ngô; Christiane Chéreau; Carole Nicco; Bernard Weill; Charles Chapron; Frédéric Batteux

Endometriosis is associated with chronic inflammation, and reactive oxygen species (ROS) are proinflammatory mediators that modulate cell proliferation. We have investigated whether the dysregulation of ROS production in endometriotic cells correlates with a pro-proliferative phenotype and can explain the spreading of this disease. Stromal and epithelial cells were purified from ovarian endometrioma and eutopic endometrium from 14 patients with endometriosis to produce four primary cell lines from each patient. ROS production, detoxification pathways, cell proliferation, and mitogen-activated protein kinase pathway activation were studied and compared with epithelial and stromal cell lines from 14 patients without endometriosis. Modulation of the proliferation of endometriosis by N-acetyl-cysteine, danazol, and mifepristone was tested in vitro and in 28 nude mice implanted with endometriotic tissue of human origin. Endometriotic cells displayed higher endogenous oxidative stress with an increase in ROS production, alterations in ROS detoxification pathways, and a drop in catalase levels, as observed for tumor cells. This increase in endogenous ROS correlated with increased cellular proliferation and activation of ERK1/2. These phenomena were abrogated by the antioxidant molecule N-acetyl-cysteine both in vitro and in a mouse model of endometriosis. Human endometriotic cells display activated pERK, enhanced ROS production, and proliferative capability. Our murine model shows that antioxidant molecules could be used as safe and efficient treatments for endometriosis.


Thorax | 2005

Anti-endothelial cell antibodies in idiopathic and systemic sclerosis associated pulmonary arterial hypertension

Mathieu C. Tamby; Youri Chanseaud; Marc Humbert; J Fermanian; Philippe Guilpain; P Garcia-de-la-Peña-Lefebvre; S Brunet; A Servettaz; Bernard Weill; Gérald Simonneau; Loïc Guillevin; M C Boissier; Luc Mouthon

Background: It has previously been shown that IgG antibodies from patients with limited cutaneous systemic sclerosis (SSc) bind to specific microvascular endothelial cell antigens. Since patients with limited cutaneous SSc are prone to develop pulmonary arterial hypertension (PAH), and since endothelial cell activation is involved in the pathogenesis of idiopathic PAH (IPAH), a study was undertaken to examine the presence of anti-endothelial cell antibodies in patients with idiopathic or SSc associated PAH. Methods: PAH was confirmed by right heart catheterisation (mean pulmonary artery pressure at rest >25 mm Hg). Serum IgG and IgM reactivities were analysed by immunoblotting on human macrovascular and microvascular lung and dermal endothelial cells from patients with IPAH (n = 35), patients with PAH associated with SSc (n = 10), patients with diffuse (n = 10) or limited cutaneous (n = 10) SSc without PAH, and 65 age and sex matched healthy individuals. Results: IgG antibodies from patients with IPAH bound to a 36 kDa band in macrovascular endothelial cell extracts with a higher intensity than IgG from other patient groups and controls. IgG antibodies from patients with IPAH bound more strongly to a 58 kDa band in microvascular dermal endothelial cells and to a 53 kDa band in microvascular lung endothelial cells than IgG antibodies from other patients and controls. IgG antibodies from patients with limited cutaneous SSc with or without PAH, but not from other groups or from healthy controls, bound to two major bands (75 kDa and 85 kDa) in microvascular endothelial cells. Conclusion: IgG antibodies from patients with idiopathic or SSc associated PAH express distinct reactivity profiles with macrovascular and microvascular endothelial cell antigens.


Journal of Immunology | 2009

Selective Oxidation of DNA Topoisomerase 1 Induces Systemic Sclerosis in the Mouse

Amélie Servettaz; Claire Goulvestre; Niloufar Kavian; Carole Nicco; Philippe Guilpain; Christiane Chéreau; Vincent Vuiblet; Loïc Guillevin; Luc Mouthon; Bernard Weill; Frédéric Batteux

Systemic sclerosis (SSc) is a connective tissue disorder of great clinical heterogeneity. Its pathophysiology remains unclear. Our aim was to evaluate the relative roles of reactive oxygen species (ROS) and of the immune system using an original model of SSc. BALB/c and immunodeficient BALB/c SCID mice were injected s.c. with prooxidative agents (hydroxyl radicals, hypochlorous acid, peroxynitrites, superoxide anions), bleomycin, or PBS everyday for 6 wk. Skin and lung fibrosis were assessed by histological and biochemical methods. Autoantibodies were detected by ELISA. The effects of mouse sera on H2O2 production by endothelial cells and on fibroblast proliferation, and serum concentrations in advanced oxidation protein products (AOPP) were compared with sera from patients with limited or diffuse SSc. We observed that s.c. peroxynitrites induced skin fibrosis and serum anti-CENP-B Abs that characterize limited SSc, whereas hypochlorite or hydroxyl radicals induced cutaneous and lung fibrosis and anti-DNA topoisomerase 1 autoantibodies that characterize human diffuse SSc. Sera from hypochlorite- or hydroxyl radical-treated mice and of patients with diffuse SSc contained high levels of AOPP that triggered endothelial production of H2O2 and fibroblast hyperproliferation. Oxidized topoisomerase 1 recapitulated the effects of whole serum AOPP. SCID mice developed an attenuated form of SSc, demonstrating the synergistic role of the immune system with AOPP in disease propagation. We demonstrate a direct role for ROS in SSc and show that the nature of the ROS dictates the form of SSc. Moreover, this demonstration is the first that shows the specific oxidation of an autoantigen directly participates in the pathogenesis of an autoimmune disease.


Hepatology | 2004

Pivotal role of superoxide anion and beneficial effect of antioxidant molecules in murine steatohepatitis

Alexis Laurent; Carole Nicco; Jeanne Tran Van Nhieu; Didier Borderie; Christiane Chéreau; Filomena Conti; Patrick Jaffray; Olivier Soubrane; Yvon Calmus; Bernard Weill; Frédéric Batteux

Nonalcoholic fatty liver disease, frequently associated with obesity, can lead to nonalcoholic steatohepatitis (NASH) and cirrhosis. The pathophysiology of NASH is poorly understood, and no effective treatment is available. In view of a potential deleterious role for reactive oxygen species (ROS), we investigated the origin of ROS overproduction in NASH. Mitochondrial production of ROS and its alterations in the presence of antioxidant molecules were studied in livers from ob/ob mice that bear a mutation of the leptin gene and develop experimental NASH. N‐acetyl‐cysteine and the superoxide dismutase (SOD) mimics ambroxol, manganese [III] tetrakis (5,10,15,20 benzoic acid) (MnTBAP), and copper [II] diisopropyl salicylate (CuDIPS) were used to target different checkpoints of the oxidative cascade to determine the pathways involved in ROS production. Liver mitochondria from ob/ob mice generated more O2°− than those of lean littermates (P < .01). Ex vivo, all three SOD mimics decreased O2°− generation (P < .001) and totally inhibited lipid peroxidation (P < .001) versus untreated ob/ob mice. Those modifications were associated with in vivo improvements: MnTBAP and CuDIPS reduced weight (P < .02) and limited the extension of histological liver steatosis by 30% and 52%, respectively, versus untreated ob/ob mice. In conclusion, these data demonstrate deleterious effects of superoxide anions in NASH and point at the potential interest of nonpeptidyl mimics of SOD in the treatment of NASH in humans. (HEPATOLOGY 2004;39:1277–1285.)


European Respiratory Journal | 2006

Antibodies to fibroblasts in idiopathic and scleroderma-associated pulmonary hypertension

Mathieu C. Tamby; Marc Humbert; Philippe Guilpain; Amélie Servettaz; Nicolas Dupin; John J. Christner; Gérald Simonneau; Jacques Fermanian; Bernard Weill; Loïc Guillevin; Luc Mouthon

The aim of the present study was to investigate the presence of anti-fibroblast antibodies in patients with idiopathic or scleroderma-associated pulmonary arterial hypertension (PAH) and healthy controls. PAH was documented by right-heart catheterisation (mean pulmonary artery pressure at rest >25 mmHg). Serum immunoglobulin (Ig)G and IgM reactivities of patients with idiopathic PAH (n = 35), scleroderma-associated PAH (n = 10), diffuse (n = 10) or limited cutaneous (n = 10) scleroderma without PAH and age- and sex-matched healthy individuals (n = 65) were analysed by cell-based ELISA and immunoblotting on normal human fibroblasts. As assessed by ELISA, 14 out of 35 (40%) patients with idiopathic PAH and three out of 10 (30%) patients with scleroderma-associated PAH expressed anti-fibroblast IgG antibodies. IgG from all individuals bound to one major 40-kDa protein band. IgG from patients with idiopathic PAH bound to two 25- and 60-kDa bands with a higher intensity than IgG from other individuals. In conclusion, immunoglobulin G anti-fibroblast antibodies are present in the serum of patients with pulmonary arterial hypertension. Immunoglobulin G from patients with idiopathic pulmonary arterial hypertension or scleroderma-associated pulmonary arterial hypertension express distinct reactivity profiles with fibroblasts antigens, suggesting distinct target antigens.


Transgenic Research | 1999

Association of the 5′ HS4 sequence of the chicken β‐globin locus control region with human EF1α gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits

Frédérique Taboit‐Dameron; Benoit Malassagne; Celine Viglietta; Claudine Puissant; Mathieu Leroux-Coyau; Christiane Chéreau; Joe Attal; Bernard Weill; Louis-Marie Houdebine

Whatever its field of application, animal transgenesis aims at a high level of reproducible and stable transgene expression. In the case of xenotransplantation, prevention of hyperacute rejection of grafts of animal origin requires the use of organs expressing human inhibitors of complement activation such as CD55 (DAF) and CD59. Pigs transgenic for these molecules have been produced, but with low and variable levels of expression. In order to improve cDNA expression, a vector containing the 5′HS4 region from the LCR of the chicken β‐globin locus and the promoter and the first intron from the human EF1α gene, was used to co‐express human CD55 and CD59 cDNAs in transgenic rabbits. The transgenic lines with the 5′HS4 region displayed dramatically enhanced CD55 and CD59 mRNA concentrations in brain, heart, kidney, liver, lung, muscle, spleen and aortic endothelial cells in comparison with the transgenic lines without the 5′HS4 region. In the absence of the 5′HS4 region, only some of the transgenic lines displayed specific mRNAs and at low levels. Human CD55 and CD59 proteins were detectable in mononuclear cells from transgenic rabbits although at a lower level than in human mononuclear cells. On the other hand, primary aortic endothelial cells from a bi‐transgenic line were very efficiently protected in vitro against human complement‐dependent lysis. Transgenic rabbits harbouring the two human inhibitors of complement activation, CD55 and CD59, can therefore be used as new models in xenotransplantation. Moreover, the vector containing the 5′HS4 region from the LCR of the chicken β‐globin locus seems appropriate not only for xenotransplantation but also for any other studies involving transgenic animals in which cDNAs have to be expressed at a high level in all cell types.


Gastroenterology | 1992

Immunosuppressive properties of chenodeoxycholic and ursodeoxycholic acids in the mouse

Yvon Calmus; Bernard Weill; Yves Ozier; Christiane Chéreau; Didier Houssin; Raoul Poupon

Cell-mediated immunity is impaired during cholestasis, and there is evidence that bile acids play a role in this immune defect. Ursodeoxycholic acid (UDCA), which corrects the immunological abnormalities observed in primary biliary cirrhosis, could counter the detrimental effects of the endogenous bile acids. Accordingly, we assessed the respective effects of cholestasis, chenodeoxycholic acid (CDCA), and UDCA, using mixed lymphocyte culture as a model of allogeneic immune response. CDCA induced a dose-dependent inhibition of the proliferative response (0-150 mumol/L). Mononuclear cells obtained from bile duct-ligated mice had a normal immunostimulatory effect, whereas responder cells obtained from such animals showed a profoundly impaired proliferative response, suggesting that responder T cels are the main target of the cholestasis-induced immune defect. Supplementation of cultures with exogenous interleukins partially compensated for the inhibitory effect of 25 mumol/L CDCA, but not for that of 50 mumol/L CDCA, suggesting that impaired secretion of interleukins is not the only factor involved in the effect of bile acids. In contrast to CDCA, UDCA had no inhibitory effect on the allogenic immune response at concentrations of up to 50 mumol/L.


PLOS Pathogens | 2009

Production of Superoxide Anions by Keratinocytes Initiates P. acnes-Induced Inflammation of the Skin

Philippe A. Grange; Christiane Chéreau; Joël Raingeaud; Carole Nicco; Bernard Weill; Nicolas Dupin; Frédéric Batteux

Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. Propionibacterium acnes (P. acnes), a gram-positive anareobic bacterium, plays a critical role in the development of these inflammatory lesions. This study aimed at determining whether reactive oxygen species (ROS) are produced by keratinocytes upon P. acnes infection, dissecting the mechanism of this production, and investigating how this phenomenon integrates in the general inflammatory response induced by P. acnes. In our hands, ROS, and especially superoxide anions (O2 •−), were rapidly produced by keratinocytes upon stimulation by P. acnes surface proteins. In P. acnes-stimulated keratinocytes, O2 •− was produced by NAD(P)H oxidase through activation of the scavenger receptor CD36. O2 •− was dismuted by superoxide dismutase to form hydrogen peroxide which was further detoxified into water by the GSH/GPx system. In addition, P. acnes-induced O2 •− abrogated P. acnes growth and was involved in keratinocyte lysis through the combination of O2 •− with nitric oxide to form peroxynitrites. Finally, retinoic acid derivates, the most efficient anti-acneic drugs, prevent O2 •− production, IL-8 release and keratinocyte apoptosis, suggesting the relevance of this pathway in humans.


Arthritis & Rheumatism | 2010

Targeting ADAM-17/notch signaling abrogates the development of systemic sclerosis in a murine model

Niloufar Kavian; Amélie Servettaz; Céline Mongaret; Andrew Wang; Carole Nicco; Christiane Chéreau; Philippe A. Grange; Vincent Vuiblet; Philippe Birembaut; Marie-Danièle Diebold; Bernard Weill; Nicolas Dupin; Frédéric Batteux

OBJECTIVE Systemic sclerosis (SSc) is characterized by the fibrosis of various organs, vascular hyperreactivity, and immunologic dysregulation. Since Notch signaling is known to affect fibroblast homeostasis, angiogenesis, and lymphocyte development, we undertook this study to investigate the role of the Notch pathway in human and murine SSc. METHODS SSc was induced in BALB/c mice by subcutaneous injections of HOCl every day for 6 weeks. Notch activation was analyzed in tissues from mice with SSc and from patients with scleroderma. Mice with SSc were either treated or not treated with the γ-secretase inhibitor DAPT, a specific inhibitor of the Notch pathway, and the severity of the disease was evaluated. RESULTS As previously described, mice exposed to HOCl developed a diffuse cutaneous SSc with pulmonary fibrosis and anti-DNA topoisomerase I antibodies. The Notch pathway was hyperactivated in the skin, lung, fibroblasts, and splenocytes of diseased mice and in skin biopsy samples from patients with scleroderma. ADAM-17, a proteinase involved in Notch activation, was overexpressed in the skin of mice and patients in response to the local production of reactive oxygen species. In HOCl-injected mice, DAPT significantly reduced the development of skin and lung fibrosis, decreased skin fibroblast proliferation and ex vivo serum-induced endothelial H(2)O(2) production, and abrogated the production of anti-DNA topoisomerase I antibodies. CONCLUSION Our results show the pivotal role of the ADAM-17/Notch pathway in SSc following activation by reactive oxygen species. The inhibition of this pathway may represent a new treatment of this life-threatening disease.

Collaboration


Dive into the Bernard Weill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carole Nicco

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amélie Servettaz

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Mouthon

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Claire Goulvestre

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Wioleta Marut

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge