Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernardo Clavijo is active.

Publication


Featured researches published by Bernardo Clavijo.


Bioinformatics | 2014

NextClip: an analysis and read preparation tool for Nextera long mate pair libraries

Richard M. Leggett; Bernardo Clavijo; Leah Clissold; Matthew D. Clark; Mario Caccamo

SUMMARY Illuminas recently released Nextera Long Mate Pair (LMP) kit enables production of jumping libraries of up to 12 kb. The LMP libraries are an invaluable resource for carrying out complex assemblies and other downstream bioinformatics analyses such as the characterization of structural variants. However, LMP libraries are intrinsically noisy and to maximize their value, post-sequencing data analysis is required. Standardizing laboratory protocols and the selection of sequenced reads for downstream analysis are non-trivial tasks. NextClip is a tool for analyzing reads from LMP libraries, generating a comprehensive quality report and extracting good quality trimmed and deduplicated reads. AVAILABILITY AND IMPLEMENTATION Source code, user guide and example data are available from https://github.com/richardmleggett/nextclip/.


Genome Research | 2017

An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations

Bernardo Clavijo; Luca Venturini; Christian Schudoma; Gonzalo Garcia Accinelli; Gemy Kaithakottil; Jonathan Wright; Philippa Borrill; George Kettleborough; Darren Heavens; Helen D. Chapman; James Lipscombe; Tom Barker; Fu-Hao Lu; Neil McKenzie; Dina Raats; Ricardo H. Ramirez-Gonzalez; Aurore Coince; Ned Peel; Lawrence Percival-Alwyn; Owen Duncan; Josua Trösch; Guotai Yu; Dan Bolser; Guy Namaati; Arnaud Kerhornou; Manuel Spannagl; Heidrun Gundlach; Georg Haberer; Robert Davey; Christine Fosker

Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.


GigaScience | 2017

The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum

Aleksey V. Zimin; Daniela Puiu; Richard Hall; Sarah Kingan; Bernardo Clavijo

Abstract Common bread wheat, Triticum aestivum, has one of the most complex genomes known to science, with 6 copies of each chromosome, enormous numbers of near-identical sequences scattered throughout, and an overall haploid size of more than 15 billion bases. Multiple past attempts to assemble the genome have produced assemblies that were well short of the estimated genome size. Here we report the first near-complete assembly of T. aestivum, using deep sequencing coverage from a combination of short Illumina reads and very long Pacific Biosciences reads. The final assembly contains 15 344 693 583 bases and has a weighted average (N50) contig size of 232 659 bases. This represents by far the most complete and contiguous assembly of the wheat genome to date, providing a strong foundation for future genetic studies of this important food crop. We also report how we used the recently published genome of Aegilops tauschii, the diploid ancestor of the wheat D genome, to identify 4 179 762 575 bp of T. aestivum that correspond to its D genome components.


Nature | 2017

Genome sequence and genetic diversity of European ash trees

Elizabeth Sollars; Andrea L. Harper; Laura J. Kelly; Christine Sambles; Ricardo H. Ramirez-Gonzalez; David Swarbreck; Gemy Kaithakottil; Endymion D. Cooper; Cristobal Uauy; Lenka Havlickova; Gemma Worswick; David J. Studholme; Jasmin Zohren; Deborah L. Salmon; Bernardo Clavijo; Yi Li; Zhesi He; Alison Fellgett; Lea Vig McKinney; Lene Rostgaard Nielsen; Gerry C. Douglas; Erik Dahl Kjær; J. Allan Downie; David Boshier; S. L. Lee; Jo Clark; Murray Grant; Ian Bancroft; Mario Caccamo; Richard J. A. Buggs

Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.


Frontiers in Genetics | 2013

Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics.

Richard M. Leggett; Ricardo H. Ramirez-Gonzalez; Bernardo Clavijo; Darren Waite; Robert Davey

The processes of quality assessment and control are an active area of research at The Genome Analysis Centre (TGAC). Unlike other sequencing centers that often concentrate on a certain species or technology, TGAC applies expertise in genomics and bioinformatics to a wide range of projects, often requiring bespoke wet lab and in silico workflows. TGAC is fortunate to have access to a diverse range of sequencing and analysis platforms, and we are at the forefront of investigations into library quality and sequence data assessment. We have developed and implemented a number of algorithms, tools, pipelines and packages to ascertain, store, and expose quality metrics across a number of next-generation sequencing platforms, allowing rapid and in-depth cross-platform Quality Control (QC) bioinformatics. In this review, we describe these tools as a vehicle for data-driven informatics, offering the potential to provide richer context for downstream analysis and to inform experimental design.


Genome Biology | 2017

Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species

Thomas C. Mathers; Yazhou Chen; Gemy Kaithakottil; Fabrice Legeai; Sam T. Mugford; Patrice Baa-Puyoulet; Anthony Bretaudeau; Bernardo Clavijo; Stefano Colella; Olivier Collin; Tamas Dalmay; Thomas Derrien; Honglin Feng; Toni Gabaldón; Anna Jordan; Irene Julca; Graeme J. Kettles; Krissana Kowitwanich; Dominique Lavenier; Paolo Lenzi; Sara Lopez-Gomollon; Damian Loska; Daniel Mapleson; Florian Maumus; Simon Moxon; Daniel R.G. Price; Akiko Sugio; Manuella van Munster; Marilyne Uzest; Darren Waite

BackgroundThe prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species.ResultsTo investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes.ConclusionsPrevious research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution.


Genome Research | 2017

Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data

Wen-Biao Jiao; Gonzalo Garcia Accinelli; Benjamin Hartwig; Christiane Kiefer; David Baker; Edouard Severing; Eva-Maria Willing; Mathieu Piednoël; Stefan Woetzel; Eva Madrid-Herrero; Bruno Huettel; Ulrike Hümann; Richard Reinhard; Marcus A. Koch; Daniel Swan; Bernardo Clavijo; George Coupland; Korbinian Schneeberger

Long-read sequencing can overcome the weaknesses of short reads in the assembly of eukaryotic genomes; however, at present additional scaffolding is needed to achieve chromosome-level assemblies. We generated Pacific Biosciences (PacBio) long-read data of the genomes of three relatives of the model plant Arabidopsis thaliana and assembled all three genomes into only a few hundred contigs. To improve the contiguities of these assemblies, we generated BioNano Genomics optical mapping and Dovetail Genomics chromosome conformation capture data for genome scaffolding. Despite their technical differences, optical mapping and chromosome conformation capture performed similarly and doubled N50 values. After improving both integration methods, assembly contiguity reached chromosome-arm-levels. We rigorously assessed the quality of contigs and scaffolds using Illumina mate-pair libraries and genetic map information. This showed that PacBio assemblies have high sequence accuracy but can contain several misassemblies, which join unlinked regions of the genome. Most, but not all, of these misjoints were removed during the integration of the optical mapping and chromosome conformation capture data. Even though none of the centromeres were fully assembled, the scaffolds revealed large parts of some centromeric regions, even including some of the heterochromatic regions, which are not present in gold standard reference sequences.


GigaScience | 2013

Crowdsourcing genomic analyses of ash and ash dieback - power to the people.

Daniel MacLean; Kentaro Yoshida; Anne Edwards; Lisa Crossman; Bernardo Clavijo; Matthew D. Clark; David Swarbreck; Matthew Bashton; Patrick Chapman; Mark Gijzen; Mario Caccamo; Allan Downie; Sophien Kamoun; Diane G. O. Saunders

Ash dieback is a devastating fungal disease of ash trees that has swept across Europe and recently reached the UK. This emergent pathogen has received little study in the past and its effect threatens to overwhelm the ash population. In response to this we have produced some initial genomics datasets and taken the unusual step of releasing them to the scientific community for analysis without first performing our own. In this manner we hope to ‘crowdsource’ analyses and bring the expertise of the community to bear on this problem as quickly as possible. Our data has been released through our website at oadb.tsl.ac.uk and a public GitHub repository.


Genome Announcements | 2014

Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture

Diego Rivera; Santiago Revale; Romina Molina; José L. Gualpa; Mariana Puente; Guillermo A. Maroniche; Gastón Paris; David Baker; Bernardo Clavijo; Kirsten McLay; Stijn Spaepen; Alejandro Perticari; Martin P. Vazquez; Florence Wisniewski-Dyé; Chris Watkins; Francisco Martínez-Abarca; Jos Vanderleyden; Fabricio Cassán

ABSTRACT We present the complete genome sequence of Azospirillum brasilense Az39, isolated from wheat roots in the central region of Argentina and used as inoculant in extensive and intensive agriculture during the last four decades. The genome consists of 7.39 Mb, distributed in six replicons: one chromosome, three chromids, and two plasmids.


PLOS ONE | 2012

Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray.

Paula Virginia Fernández; Marcelo Soria; David Blesa; Julio Dirienzo; Sebastián Moschen; Máximo Rivarola; Bernardo Clavijo; Sergio Gonzalez; Darı́o Prı́ncipi; Guillermo A. A. Dosio; Luis A.N. Aguirrezábal; Francisco García-García; Ana Conesa; Esteban Hopp; Joaquín Dopazo; Ruth A. Heinz; Norma Paniego

Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

Collaboration


Dive into the Bernardo Clavijo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge