Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernardo Franco is active.

Publication


Featured researches published by Bernardo Franco.


Ecological Entomology | 2016

Insect immune priming: ecology and experimental evidences

Jorge Contreras-Garduño; Humberto Lanz-Mendoza; Bernardo Franco; Adriana Palma Nava; Mario Pedraza-Reyes; Jorge Canales-Lazcano

1. Immune priming refers to improved protection of the host after a second encounter with the same parasite or pathogen. This phenomenon is similar to that of adaptive immunity in vertebrates.


Journal of Microbiological Methods | 2016

Analysis of Sporothrix schenckii sensu stricto and Sporothrix brasiliensis virulence in Galleria mellonella

Diana Marcela Clavijo-Giraldo; José A. Matínez-Alvarez; Leila M. Lopes-Bezerra; Patricia Ponce-Noyola; Bernardo Franco; Ricardo Sergio Almeida; Héctor M. Mora-Montes

The study of the host-pathogen interaction is essential to understand the mechanisms underlying adhesion, colonization and tissue damage by pathogens. This is usually achieved by performing in vivo studies using small mammals, such as rats, mice and guinea pigs. Nowadays, the mouse models of systemic or subcutaneous infection are the gold standard assays to analyze the virulence of members of the Sporothrix schenckii complex. There are, however, invertebrates that have been recently used as alternative hosts to assess the virulence of both bacteria and fungi, and among them, larvae of Galleria mellonella are popular because they are easy to breed, and require non-specialized facilities to maintain the colony. Here, we assessed the use of G. mellonella larvae to test the virulence of S. schenckii sensu stricto and Sporothrix brasiliensis strains, and found that infection with yeast-like cells, but not with conidia or germlings, reproduces the virulence data generated in the mouse model of infection. Furthermore, with this insect model we could classify the virulence of some strains as low, intermediate or high, in line with the observations in the mammalian model. Therefore, G. mellonella is suitable, and a new alternative, to test virulence of both S. schenckii sensu stricto and S. brasiliensis.


Archives of Microbiology | 2015

Cell damage detection using Escherichia coli reporter plasmids: fluorescent and colorimetric assays

Felipe Padilla-Martínez; Luz Adriana Carrizosa-Villegas; Ángeles Rangel-Serrano; Itzel Paramo-Pérez; Verónica Mondragón-Jaimes; Fernando Anaya-Velázquez; Felipe Padilla-Vaca; Bernardo Franco

Bacterial reporter assays are powerful tools used to study the effect of different compounds that affect the physiology of cellular processes. Most bacterial reporters are luciferase based and can be monitored in real time. In the present study we designed and implemented two sets of Escherichia coli bacterial reporter assays, using a multicopy plasmid system. Each reporter strain was constructed using either green fluorescent protein or β-galactosidase (LacZ) proteins. The designed reporter strains are capable of responding in a specific manner to molecules that either oxidative stress, or membrane, protein, or DNA damage. In order to respond to the desired stimulus, promoter sequences from E. coli were used. These sequences correspond to the promoter of the major catalase (KatG) activated with cellular oxidative damage, the promoter of the β-hydroxydecanoyl-ACP dehydrase (FabA) which is activated with membrane perturbation, the promoter of DNA recombinase (RecA) which is activated by DNA lesions. For protein misfolding, the promoter of the heat-shock responsive chaperon (DnaK) was used. Our constructs displayed activation to damage from specific stimuli, and low response to nonspecific stimuli was detected. Our results suggest that these types of bacterial reporter strains can be used in semiquantitative (fluorometric) and qualitative (β-galactosidase activity) studies of different xenobiotic substances and pollutants.


Nucleosides, Nucleotides & Nucleic Acids | 2016

Purification of Single-Stranded cDNA Based on RNA Degradation Treatment and Adsorption Chromatography

Elías Trujillo-Esquivel; Bernardo Franco; Alberto Flores-Martínez; Patricia Ponce-Noyola; Héctor M. Mora-Montes

ABSTRACT Analysis of gene expression is a common research tool to study networks controlling gene expression, the role of genes with unknown function, and environmentally induced responses of organisms. Most of the analytical tools used to analyze gene expression rely on accurate cDNA synthesis and quantification to obtain reproducible and quantifiable results. Thus far, most commercial kits for isolation and purification of cDNA target double-stranded molecules, which do not accurately represent the abundance of transcripts. In the present report, we provide a simple and fast method to purify single-stranded cDNA, exhibiting high purity and yield. This method is based on the treatment with RNase H and RNase A after cDNA synthesis, followed by separation in silica spin-columns and ethanol precipitation. In addition, our method avoids the use of DNase I to eliminate genomic DNA from RNA preparations, which improves cDNA yield. As a case report, our method proved to be useful in the purification of single-stranded cDNA from the pathogenic fungus Sporothrix schenckii.


Frontiers in Microbiology | 2017

Phosphomannosylation and the functional analysis of the extended Candida albicans MNN4-like gene family

Roberto J. González-Hernández; Kai Jin; Marco J. Hernández-Chávez; Diana Fabiola Díaz-Jiménez; Elías Trujillo-Esquivel; Diana Marcela Clavijo-Giraldo; Alma K. Tamez-Castrellón; Bernardo Franco; Neil Andrew Robert Gow; Héctor M. Mora-Montes

Phosphomannosylation is a modification of cell wall proteins that occurs in some species of yeast-like organisms, including the human pathogen Candida albicans. These modified mannans confer a negative charge to the wall, which is important for the interactions with phagocytic cells of the immune systems and cationic antimicrobial peptides. In Saccharomyces cerevisiae, the synthesis of phosphomannan relies on two enzymes, the phosphomannosyltransferase Ktr6 and its positive regulator Mnn4. However, in C. albicans, at least three phosphomannosyltransferases, Mnn4, Mnt3 and Mnt5, participate in the addition of phosphomannan. In addition to MNN4, C. albicans has a MNN4-like gene family composed of seven other homologous members that have no known function. Here, using the classical mini-Ura-blaster approach and the new gene knockout CRISPR-Cas9 system for gene disruption, we generated mutants lacking single and multiple genes of the MNN4 family; and demonstrate that, although Mnn4 has a major impact on the phosphomannan content, MNN42 was also required for full protein phosphomannosylation. The reintroduction of MNN41, MNN42, MNN46, or MNN47 in a genetic background lacking MNN4 partially restored the phenotype associated with the mnn4Δ null mutant, suggesting that there is partial redundancy of function between some family members and that the dominant effect of MNN4 over other genes could be due to its relative abundance within the cell. We observed that additional copies of alleles number of any of the other family members, with the exception of MNN46, restored the phosphomannan content in cells lacking both MNT3 and MNT5. We, therefore, suggest that phosphomannosylation is achieved by three groups of proteins: [i] enzymes solely activated by Mnn4, [ii] enzymes activated by the dual action of Mnn4 and any of the products of other MNN4-like genes, with exception of MNN46, and [iii] activation of Mnt3 and Mnt5 by Mnn4 and Mnn46. Therefore, although the MNN4-like genes have the potential to functionally redundant with Mnn4, they apparently do not play a major role in cell wall mannosylation under most in vitro growth conditions. In addition, our phenotypic analyses indicate that several members of this gene family influence the ability of macrophages to phagocytose C. albicans cells.


International Microbiology | 2015

Synthetic biology: Novel approaches for microbiology

Felipe Padilla-Vaca; Fernando Anaya-Velázquez; Bernardo Franco

In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies.


PLOS Neglected Tropical Diseases | 2018

Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers

Leila M. Lopes-Bezerra; Louise A. Walker; Gustavo Niño-Vega; Héctor M. Mora-Montes; Gabriela Westerlund Peixoto Neves; Héctor Villalobos-Duno; Laura Barreto; Karina Garcia; Bernardo Franco; José A. Martínez-Álvarez; Carol A. Munro; Neil A. R. Gow

Sporotrichosis is a subcutaneous mycosis caused by pathogenic species of the Sporothrix genus. A new emerging species, Sporothrix brasiliensis, is related to cat-transmitted sporotrichosis and has severe clinical manifestations. The cell wall of pathogenic fungi is a unique structure and impacts directly on the host immune response. We reveal and compare the cell wall structures of Sporothrix schenckii and S. brasiliensis using high-pressure freezing electron microscopy to study the cell wall organization of both species. To analyze the components of the cell wall, we also used infrared and 13C and 1H NMR spectroscopy and the sugar composition was determined by quantitative high-performance anion-exchange chromatography. Our ultrastructural data revealed a bi-layered cell wall structure for both species, including an external microfibrillar layer and an inner electron-dense layer. The inner and outer layers of the S. brasiliensis cell wall were thicker than those of S. schenckii, correlating with an increase in the chitin and rhamnose contents. Moreover, the outer microfibrillar layer of the S. brasiliensis cell wall had longer microfibrils interconnecting yeast cells. Distinct from those of other dimorphic fungi, the cell wall of Sporothrix spp. lacked α-glucan component. Interestingly, glycogen α-particles were identified in the cytoplasm close to the cell wall and the plasma membrane. The cell wall structure as well as the presence of glycogen α-particles varied over time during cell culture. The structural differences observed in the cell wall of these Sporothrix species seemed to impact its uptake by monocyte-derived human macrophages. The data presented here show a unique cell wall structure of S. brasiliensis and S. schenckii during the yeast parasitic phase. A new cell wall model for Sporothrix spp. is therefore proposed that suggests that these fungi molt sheets of intact cell wall layers. This observation may have significant effects on localized and disseminated immunopathology.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2018

Biochemical and genetic analysis of a unique poly(ADP-ribosyl) glycohydrolase (PARG) of the pathogenic fungus Fusarium oxysporum f. sp. lycopersici

Carlos A. Araiza-Cervantes; Víctor Meza-Carmen; Guadalupe Martínez-Cadena; M. Isabel G. Roncero; Georgina E. Reyna-López; Bernardo Franco

The genome sequence of the plant pathogen Fusarium oxysporum f. sp. lycopersici contains a single gene encoding a predicted poly(ADP-ribose) glycohydrolase (FOXG_05947.2, PARG). Here, we assessed whether this gene has a role as a global regulator of DNA repair or in virulence as an ADP ribosylating toxin homologue of bacteria. The PARG protein was purified after expressing its encoding gene in Escherichia coli. Its inhibition by 6,9-diamino-2-ethoxyacridine lactate monohydrate and tannins was similar to its human orthologue that is involved in DNA repair. A deletion strain of F. oxysporum f. sp. lycopersici showed no growth defects and was not affected in pathogenicity. Together, our results indicate that the PARG protein of F. oxysporum f. sp. lycopersici is involved in DNA repair and does not act in pathogenicity as an effector.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2018

Development of an oxidative stress sensor in live bacteria using the optimized HyPer2 protein

Bernardo Franco; Felipe Padilla-Vaca; Naurú Idalia Vargas-Maya; Luz Janeth Herrera-Gutiérrez; Josué Mora-Garduño; Margarita Tafoya-Ramírez; Itzel Paramo-Pérez; Fernando Anaya-Velázquez; Claudia Leticia Mendoza-Macías

Oxidative stress is a key regulator in many cellular processes but also an important burden for living organisms. The source of oxidative damage usually is difficult to measure and assess with analytical tools or chemical indicators. One major limitation is to discriminate the presence of secondary oxidant molecules derived from the cellular metabolism after exposure to the oxidant or the scavenging capacity of reactive oxygen species by cells. Using a whole-cell reporter system based on an optimized HyPer2 protein for Escherichia coli expression, we demonstrate that, as previously shown for eukaryotic organisms, the effect at the transcriptional level of hydrogen peroxide can be monitored in vivo using flow cytometry of bacterial cells without the need of a direct analytical measurement. In this approach, we generated two different HyPer2 expression systems, one that is induced by IPTG and a second one that is induced by oxidative stress responsive promoters to control the expression of the HyPer2 protein and the exposure of higher H2O2 concentrations that has been shown to activate oxidative response genes. Both systems showed that the pathway that leads to the generation of H2O2 in vivo can be traced from H2O2 exposure. Our results indicate that hydrogen peroxide pulses can be readily detected in E. coli cells by a defined fluorescence signature that is H2O2 concentration-dependent. Our findings indicate that although less sensitive than purified protein or expressed in eukaryotic cells, HyPer2 is a good bacterial sensor for H2O2. As proof of concept, this system was used to trace the oxidative capacity of Toluidine Blue O showing that oxidative stress and redox imbalance is generated inside the cell. This system is expanding the repertoire of whole cell probes available for tracing cellular stress in bacteria.


ACS Omega | 2018

Synthesis, Photophysical Study, and Biological Application Analysis of Complex Borondipyrromethene Dyes

Diana E. Ramírez-Ornelas; Rebeca Sola-Llano; Jorge Bañuelos; Iñigo López Arbeloa; José A. Martínez-Álvarez; Héctor M. Mora-Montes; Bernardo Franco; Eduardo Peña-Cabrera

A series of complex boronic acids were prepared through multicomponent reactions (MCRs). Both Passerini and Ugi MCRs were carried out in which one component was an arylboronic acid. The resulting highly functionalized boronic acids participated efficiently in the Liebeskind–Srogl cross-coupling reaction with meso-methylthioBODIPY derivatives to yield complex borondipyrromethene (BODIPY) dyes in good yields. The joined spectroscopic and computational study points out the deep impact of the arylated chromophoric position on the photophysical signatures. Thus, unconstrained aryls grafted at the meso position did not sway the spectral band positions but switched on new nonradiative relaxation channels, whereas additional arylation at the opposite α-pyrrolic position softened such fluorescence quenching and shifted the emission to the red-edge of the visible spectrum. The conducted biological analysis revealed that peripheral blood mononuclear cells incubated with these new compounds showed reduced cytotoxicity and retained their normal activities. Additionally, the dyes remained stable inside the cells after 24 h of incubation. These results demonstrated that these novel fluorescent probes based on BODIPY can be applied for cell imaging and analysis, expanding their applications.

Collaboration


Dive into the Bernardo Franco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge