Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernardo Rudy is active.

Publication


Featured researches published by Bernardo Rudy.


Annals of the New York Academy of Sciences | 1999

Molecular Diversity of K+ Channels

William A. Coetzee; Yimy Amarillo; Joanna Chiu; Alan Chow; David Lau; Tom McCormack; Herman Morena; Marcela S. Nadal; Ander Ozaita; David J. Pountney; Michael Saganich; Eleazar Vega-Saenz de Miera; Bernardo Rudy

ABSTRACT: K+ channel principal subunits are by far the largest and most diverse of the ion channels. This diversity originates partly from the large number of genes coding for K+ channel principal subunits, but also from other processes such as alternative splicing, generating multiple mRNA transcripts from a single gene, heteromeric assembly of different principal subunits, as well as possible RNA editing and posttranslational modifications. In this chapter, we attempt to give an overview (mostly in tabular format) of the different genes coding for K+ channel principal and accessory subunits and their genealogical relationships. We discuss the possible correlation of different principal subunits with native K+ channels, the biophysical and pharmacological properties of channels formed when principal subunits are expressed in heterologous expression systems, and their patterns of tissue expression. In addition, we devote a section to describing how diversity of K+ channels can be conferred by heteromultimer formation, accessory subunits, alternative splicing, RNA editing and posttranslational modifications. We trust that this collection of facts will be of use to those attempting to compare the properties of new subunits to the properties of others already known or to those interested in a comparison between native channels and cloned candidates.


Nature Reviews Neuroscience | 2008

Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex.

Giorgio A. Ascoli; Lidia Alonso-Nanclares; Stewart A. Anderson; German Barrionuevo; Ruth Benavides-Piccione; Andreas Burkhalter; György Buzsáki; Bruno Cauli; Javier DeFelipe; Alfonso Fairén; Dirk Feldmeyer; Gord Fishell; Yves Frégnac; Tamás F. Freund; Daniel Gardner; Esther P. Gardner; Jesse H. Goldberg; Moritz Helmstaedter; Shaul Hestrin; Fuyuki Karube; Zoltán F. Kisvárday; Bertrand Lambolez; David A. Lewis; Oscar Marín; Henry Markram; Alberto Muñoz; Adam M. Packer; Carl C. H. Petersen; Kathleen S. Rockland; Jean Rossier

Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.


Trends in Neurosciences | 2001

Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing

Bernardo Rudy; Chris J. McBain

Analysis of the Kv3 subfamily of K(+) channel subunits has lead to the discovery of a new class of neuronal voltage-gated K(+) channels characterized by positively shifted voltage dependencies and very fast deactivation rates. These properties are adaptations that allow these channels to produce currents that can specifically enable fast repolarization of action potentials without compromising spike initiation or height. The short spike duration and the rapid deactivation of the Kv3 currents after spike repolarization maximize the quick recovery of resting conditions after an action potential. Several neurons in the mammalian CNS have incorporated into their repertoire of voltage-dependent conductances a relatively large number of Kv3 channels to enable repetitive firing at high frequencies - an ability that crucially depends on the special properties of Kv3 channels and their impact on excitability.


Developmental Neurobiology | 2011

Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons

Bernardo Rudy; Gordon Fishell; SooHyun Lee; Jens Hjerling-Leffler

An understanding of the diversity of cortical GABAergic interneurons is critical to understand the function of the cerebral cortex. Recent data suggest that neurons expressing three markers, the Ca2+‐binding protein parvalbumin (PV), the neuropeptide somatostatin (SST), and the ionotropic serotonin receptor 5HT3a (5HT3aR) account for nearly 100% of neocortical interneurons. Interneurons expressing each of these markers have a different embryological origin. Each group includes several types of interneurons that differ in morphological and electrophysiological properties and likely have different functions in the cortical circuit. The PV group accounts for ∼40% of GABAergic neurons and includes fast spiking basket cells and chandelier cells. The SST group, which represents ∼30% of GABAergic neurons, includes the Martinotti cells and a set of neurons that specifically target layerIV. The 5HT3aR group, which also accounts for ∼30% of the total interneuronal population, is heterogeneous and includes all of the neurons that express the neuropeptide VIP, as well as an equally numerous subgroup of neurons that do not express VIP and includes neurogliaform cells. The universal modulation of these neurons by serotonin and acetylcholine via ionotropic receptors suggests that they might be involved in shaping cortical circuits during specific brain states andbehavioral contexts.


The Journal of Neuroscience | 2010

The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors

SooHyun Lee; Jens Hjerling-Leffler; Edward Zagha; Gordon Fishell; Bernardo Rudy

A highly diverse population of neocortical GABAergic inhibitory interneurons has been implicated in multiple functions in information processing within cortical circuits. The diversity of cortical interneurons is determined during development and primarily depends on their embryonic origins either from the medial (MGE) or the caudal (CGE) ganglionic eminences. Although MGE-derived parvalbumin (PV)- or somatostatin (SST)-expressing interneurons are well characterized, less is known about the other types of cortical GABAergic interneurons, especially those of CGE lineage, because of the lack of specific neuronal markers for these interneuron subtypes. Using a bacterial artificial chromosome transgenic mouse line, we show that, in the somatosensory cortex of the mouse, the serotonin 5-hydroxytryptamine 3A (5-HT3A) receptor, the only ionotropic serotonergic receptor, is expressed in most, if not all, neocortical GABAergic interneurons that do not express PV or SST. Genetic fate mapping and neurochemical profile demonstrate that 5-HT3AR-expressing neurons include the entire spectrum of CGE-derived interneurons. We report that, in addition to serotonergic responsiveness via 5-HT3ARs, acetylcholine also depolarizes 5-HT3AR-expressing neurons via nicotinic receptors. 5-HT3AR-expressing neurons in thalamocortical (TC) recipient areas receive weak but direct monosynaptic inputs from the thalamus. TC input depolarizes a subset of TC-recipient 5-HT3AR neurons as strongly as fast-spiking cells, in part because of their high input resistance. Hence, fast modulation of serotonergic and cholinergic transmission may influence cortical activity through an enhancement of GABAergic synaptic transmission from 5-HT3AR-expressing neurons during sensory process depending on different behavioral states.


Pharmacological Reviews | 2003

International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels

George A. Gutman; K. George Chandy; John P. Adelman; Jayashree Aiyar; Douglas A. Bayliss; David E. Clapham; Manuel Covarriubias; Gary V. Desir; Kiyoshi Furuichi; Barry Ganetzky; Maria L. Garcia; Stephan Grissmer; Lily Yeh Jan; Andreas Karschin; Donghee Kim; Sabina Kuperschmidt; Yoshihisa Kurachi; Michel Lazdunski; Florian Lesage; Henry A. Lester; David McKinnon; Colin G. Nichols; I. T. A. O'kelly; Jonathan Robbins; Gail A. Robertson; Bernardo Rudy; Michael C. Sanguinetti; Susumu Seino; Walter Stuehmer; Michael M. Tamkun

This summary article presents an overview of the molecular relationships among the voltage-gated potassium channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels.1 The complete Compendium, including data tables for each member of the potassium channel family can be found at http://www.iuphar-db.org/iuphar-ic/.


Nature Neuroscience | 2013

A disinhibitory circuit mediates motor integration in the somatosensory cortex

SooHyun Lee; Illya Kruglikov; Z. Josh Huang; Gord Fishell; Bernardo Rudy

The influence of motor activity on sensory processing is crucial for perception and motor execution. However, the underlying circuits are not known. To unravel the circuit by which activity in the primary vibrissal motor cortex (vM1) modulates sensory processing in the primary somatosensory barrel cortex (S1), we used optogenetics to examine the long-range inputs from vM1 to the various neuronal elements in S1. We found that S1-projecting vM1 pyramidal neurons strongly recruited vasointestinal peptide (VIP)-expressing GABAergic interneurons, a subset of serotonin receptor–expressing interneurons. These VIP interneurons preferentially inhibited somatostatin-expressing interneurons, neurons that target the distal dendrites of pyramidal cells. Consistent with this vM1-mediated disinhibitory circuit, the activity of VIP interneurons in vivo increased and that of somatostatin interneurons decreased during whisking. These changes in firing rates during whisking depended on vM1 activity. Our results suggest previously unknown circuitry by which inputs from motor cortex influence sensory processing in sensory cortex.


Annals of the New York Academy of Sciences | 1999

Contributions of Kv3 Channels to Neuronal Excitability

Bernardo Rudy; Alan Chow; David Lau; Yimy Amarillo; Ander Ozaita; Michael Saganich; Herman Moreno; Marcela S. Nadal; Ricardo Hernandez‐Pineda; Arturo Hernandez‐Cruz; Alev Erisir; Christopher Leonard; Eleazar Vega-Saenz de Miera

ABSTRACT: Four mammalian Kv3 genes have been identified, each of which generates, by alternative splicing, multiple protein products differing in their C‐terminal sequence. Products of the Kv3.1 and Kv3.2 genes express similar delayed‐rectifier type currents in heterologous expression systems, while Kv3.3 and Kv3.4 proteins express A‐type currents. All Kv3 currents activate relatively fast at voltages more positive than −10 mV, and deactivate very fast. The distribution of Kv3 mRNAs in the rodent CNS was studied by in situ hybridization, and the localization of Kv3.1 and Kv3.2 proteins has been studied by immunohistochemistry. Most Kv3.2 mRNAs (∼90%) are present in thalamic‐relay neurons throughout the dorsal thalamus. The protein is expressed mainly in the axons and terminals of these neurons. Kv3.2 channels are thought to be important for thalamocortical signal transmission. Kv3.1 and Kv3.2 proteins are coexpressed in some neuronal populations such as in fast‐spiking interneurons of the cortex and hippocampus, and neurons in the globus pallidus. Coprecipitation studies suggest that in these cells the two types of protein form heteromeric channels. Kv3 proteins appear to mediate, in native neurons, similar currents to those seen in heterologous expression systems. The activation voltage and fast deactivation rates are believed to allow these channels to help repolarize action potentials fast without affecting the threshold for action potential generation. The fast deactivating current generates a quickly recovering afterhyperpolarization, thus maximizing the rate of recovery of Na+ channel inactivation without contributing to an increase in the duration of the refractory period. These properties are believed to contribute to the ability of neurons to fire at high frequencies and to help regulate the fidelity of synaptic transmission. Experimental evidence has now become available showing that Kv3.1‐Kv3.2 channels play critical roles in the generation of fast‐spiking properties in cortical GABAergic interneurons.


Biochimica et Biophysica Acta | 1986

Interactions between membranes and cytolytic peptides

Alan W. Bernheimer; Bernardo Rudy

The physico-chemical and biological properties of cytolytic peptides derived from diverse living entities have been discussed. The principal sources of these agents are bacteria, higher fungi, cnidarians (coelenterates) and the venoms of snakes, insects and other arthropods. Attention has been directed to instances in which cytolytic peptides obtained from phylogenetically remote as well as from related sources show similarities in nature and/or mode of action (congeneric lysins). The manner in which cytolytic peptides interact with plasma membranes of eukaryotic cells, particularly the membranes of erythrocytes, has been discussed with emphasis on melittin, thiolactivated lysins and staphylococcal alpha-toxin. These and other lytic peptides are characterized in Table III. They can be broadly categorized into: (a) those which alter permeability to allow passage of ions, this process eventuating in colloid osmotic lysis, signs of which are a pre-lytic induction or latent period, pre-lytic leakage of potassium ions, cell swelling and inhibition of lysis by sucrose. Examples of lysins in which this mechanism is involved are staphylococcal alpha-toxin, streptolysin S and aerolysin; (b) phospholipases causing enzymic degradation of bilayer phospholipids as exemplified by phospholipases C of Cl. perfringens and certain other bacteria; (c) channel-forming agents such as helianthin, gramicidin and (probably) staphylococcal delta-toxin in which toxin molecules are thought to embed themselves in the membrane to form oligomeric transmembrane channels.


The Journal of Neuroscience | 1995

The potassium channel subunit KV3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons

Michael Weiser; E Bueno; C Sekirnjak; Me Martone; H Baker; Dean E. Hillman; S Chen; William B. Thornhill; M Ellisman; Bernardo Rudy

Potassium channels play major roles in the regulation of many aspects of neuronal excitability. These channels are particularly well suited for such multiplicity of roles since there is a large diversity of channel types. This diversity contributes to the ability of specific neurons (and possibly different regions of the same neuron) to respond uniquely to a given input. Neuronal integration depends on the local response of spatially segregated inputs to the cell and the communication of these integration centers with the axon. Therefore, the functional implications of a given set of K+ channels varies depending on their precise location on the neuronal surface. Site- specific antibodies were utilized to characterize the distribution of KV3.1b, a subunit of voltage-gated K+ channels in CNS neurons. KV3.1b subunits are expressed in specific neuronal populations of the rat brain, such as cerebellar granule cells, projecting neurons of deep cerebellar nuclei, the substantia nigra pars-reticulata, the globus pallidus, and the ventral thalamus (reticular thalamic nucleus, ventral lateral geniculate and zona incerta). The KV3.1b protein is also present in various neuronal populations involved in the processing of auditory signals, including the inferior colliculus, the nuclei of the lateral lemniscus, the superior olive, and some parts of the cochlear nuclei; as well as in several other neuronal groups in the brainstem (e.g., in the oculomotor nucleus, the pontine nuclei, the reticulotegmental nucleus of the pons, trigeminal and vestibular nuclei, and the reticular formation) and subsets of neurons in the neocortex, the hippocampus and the caudate-putamen shown by double staining to correspond to neurons containing parvalbumin. KV3.1b subunits are localized predominantly in somatic and axonal membranes (particularly in axonal terminal fields) but are much less prominent in dendritic arborizations. This distribution is different than that of other subunits of voltage gated K+ channels and is consistent with a role in the modulation of action potentials. KV3.1b proteins have a cellular and subcellular distribution different than the related KV3.2 subunits which express in Xenopus oocytes currents similar to those expressed by KV3.1b.

Collaboration


Dive into the Bernardo Rudy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge