Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernd Hänfling is active.

Publication


Featured researches published by Bernd Hänfling.


Molecular Ecology | 2006

Genetic population structure and contemporary dispersal patterns of a recent European invader, the Chinese mitten crab, Eriocheir sinensis

Leif-Matthias Herborg; David Weetman; Cock van Oosterhout; Bernd Hänfling

Genetic studies of recently established populations are challenging because the assumption of equilibrium underlying many analyses is likely to be violated. Using microsatellites, we investigated determinants of genetic structure and migration among invasive European‐Chinese mitten crab populations, applying a combination of traditional population genetic analyses and nonequilibrium Bayesian methods. Consistent with their recent history, invasive populations showed much lower levels of genetic diversity than a native Chinese population, indicative of recent bottlenecks. Population differentiation was generally low but significant and especially pronounced among recently established populations. Significant differentiation among cohorts from the same geographical location (River Thames) suggests the low effective population size and associated strong genetic drift that would be anticipated from a very recent colonization. An isolation‐by‐distance pattern appears to be driven by an underlying correlation between geographical distance and population age, suggesting that cumulative homogenizing gene flow reduces founder bottleneck‐associated genetic differentiation between longer‐established populations. This hypothesis was supported by a coalescent analysis, which supported a drift + gene flow model as more likely than a model excluding gene flow. Furthermore, admixture analysis identified several recent migrants between the UK and Continental European population clusters. Admixture proportions were significantly predicted by the volume of shipping between sites, indicating that human‐mediated transport remains a significant factor for dispersal of mitten crabs after the initial establishment of populations. Our study highlights the value of nonequilibrium methods for the study of invasive species, and also the importance of evaluating nonequilibrium explanations for isolation by distance patterns.


Trends in Ecology and Evolution | 2002

An evolutionary perspective of biological invasions

Bernd Hänfling; Johannes Kollmann

Abstract The workshop on the Evolutionary Perspective of Biological Invasions in Terrestrial Ecosystems was held in Halle, Germany from 30 September to 3 October 2002.


Genetics | 2006

Concordant Genetic Estimators of Migration Reveal Anthropogenically Enhanced Source-Sink Population Structure in the River Sculpin, Cottus gobio

Bernd Hänfling; David Weetman

River systems are vulnerable to natural and anthropogenic habitat fragmentation and will often harbor populations deviating markedly from simplified theoretical models. We investigated fine-scale population structure in the sedentary river fish Cottus gobio using microsatellites and compared migration estimates from three FST estimators, a coalescent maximum-likelihood method and Bayesian recent migration analyses. Source-sink structure was evident via asymmetry in migration and genetic diversity with smaller upstream locations emigration biased and larger downstream subpopulations immigration biased. Patterns of isolation by distance suggested that the system was largely, but not entirely, in migration-drift equilibrium, with headwater populations harboring a signal of past colonizations and in some cases also recent population bottlenecks. Up- vs. downstream asymmetry in population structure was partly attributable to the effects of flow direction, but was enhanced by weirs prohibiting compensatory upstream migration. Estimators of migration showed strong correspondence, at least in relative terms, especially if pairwise FST was used as an indirect index of relative gene flow rather than being translated to Nm. Since true parameter values are unknown in natural systems, comparisons among estimators are important, both to determine confidence in estimates of migration and to validate the performance of different methods.


Journal of Evolutionary Biology | 2002

Timing of the population dynamics of bullhead Cottus gobio (Teleostei : Cottidae) during the Pleistocene

Filip Volckaert; Bernd Hänfling; Bart Hellemans; Gr Carvalho

Abstract Pleistocene genetic structure of the bullhead, Cottus gobio, was evaluated across the western Palearctic using a 771‐bp long fragment of the mitochondrial control region in 123 individuals collected at 35 sites (data set I). In total, 59 haplotypes that differed at 73 positions (9.3%) were detected. Data analysis also included sequences from Englbrecht et al. (2000 ), thus increasing the sampling to a more comprehensive data set of 529 fish and 63 control region sequences of 482 bp (data set II). A minimum spanning and phylogenetic tree identified a seventh clade (Brittany–Loire) in addition to the previously identified six clades. The geographical range of the North Sea and Lower Rhine clades was considerably larger than thought previously. Haplotype diversity was generally low, and the total fixation index high (FST  = 0.49). Among‐group differentiation accounted for 41.7% (data set I) of the variation. Contiguous range expansions and restricted gene flow combined with isolation by distance, interspersed with past fragmentation characterize bullhead across its range. New is the knowledge that dated interglacial periods correlated with population expansions; river captures, proglacial lake systems and sea level played a significant role in the dispersal and expansion either in northern or southern direction. Hence it became possible to identify and date the colonization routes and putative palaeorefugia, most of which were located in Central and North‐west Europe. Glacial periods resulted in distinct fragmentation events and lineage sorting.


Molecular Ecology | 2007

Phylogeography of the rare Balkan endemic Martino's vole, Dinaromys bogdanovi, reveals strong differentiation within the western Balkan Peninsula

Boris Kryštufek; Elena V. Buzan; William F. Hutchinson; Bernd Hänfling

The spatial genetic structure of Martinos vole, a rare palaeoendemic species of the western Balkans, was investigated using DNA isolated from archived museum samples. The study was based on partial sequencing (555 bp) of the mitochondrial cytochrome b gene for 63 specimens from 20 different localities throughout the species’ range. Three highly divergent allopatric phylogenetic lineages (Northwestern, Central and Southeastern) were recognized among 47 haplotypes, suggesting three independent glacial differentiation centres within the western Balkans. The Northwestern lineage, which showed the highest divergence from all other samples (mean sequence divergence of 6.64% ± 1.10), comprised samples collected from northwest of the Neretva River in Croatia, western Bosnia and Herzegovina. The Central and Southeastern lineages were separated by an average sequence divergence of 2.95% ± 0.66 and were geographically divided by the Drim River (the Kosovo Basin in Serbia). Overall, haplotype diversity decreased from the Northwestern lineage to the Central and subsequently the Southeastern lineage, in a geographical pattern consistent with a stepping stone colonization. The observed distribution indicates a gradual southerly expansion with subsequent allopatry across the Neretva River and Drim River approximately 1 and 0.3 million years ago, respectively. Such a scenario is concordant with palaeontological evidence. Several highly divergent sublineages within the Northwestern and Central lineages showed no significant geographical structuring, suggesting secondary contact of allopatrically evolved lineages. We hypothesize that the topographical complexity of the Balkans promoted allopatry and isolation on a small geographical scale during interglacial periods, with secondary contact during glacial maxima. Furthermore, the three main lineages should be regarded as evolutionary significant units with important implications for conservation. Ecological data show that the Northwestern lineage in particular fulfils all criteria for a highly endangered, evolutionarily significant unit.


Biocontrol | 2011

Invasive alien Crustacea: dispersal, establishment, impact and control

Bernd Hänfling; Francois Edwards; Francesca Gherardi

The subphylum Crustacea includes the most successful species among aquatic alien invaders. The impacts of invasive alien crustaceans (IAC) are often substantial, due to the complex trophic role of most of these species leading to cascading effects throughout the invaded ecosystems. IAC also have the potential to cause a shift in the ‘keystone’ ecosystem functions, changing energy flux and nutrient cycles which together affect critical ecosystem services such as biodiversity, fisheries yield and water quality. Although no individual trait appears to be a good predictor of invasion success, a combination of some characteristics such as eurytolerance, omnivory and certain r-selected life-history traits results in a high probability of alien crustacean species becoming invasive. Both environmental factors, such as habitat heterogeneity in the invaded ecosystems, and evolutionary factors, such as adaptations to new environmental conditions, also play important roles during establishment. Therefore, individual environmental niche models, including genetic algorithm, have the highest likelihood of providing useful predictive information about invasion success and spread of alien Crustacea. Attempts to control IAC through biocides or mechanical removal have had mixed success in the past but a strategic combination of different methods may lead to some success in the future.


Molecular Ecology | 2016

Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods.

Bernd Hänfling; Lori Lawson Handley; Daniel S. Read; Christoph Hahn; Jianlong Li; Paul Nichols; Rosetta Blackman; Anna Oliver; Ian J. Winfield

Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long‐term gill‐net data set available in the UK. Seventy‐eight 2L water samples were collected along depth profile transects, gill‐net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill‐net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods.


Conservation Biology | 2007

The Guppy as a Conservation Model: Implications of Parasitism and Inbreeding for Reintroduction Success

Cock van Oosterhout; Alan Smith; Bernd Hänfling; Indar W. Ramnarine; Ryan S. Mohammed; Joanne Cable

Ex situ conservation is of increasing importance to prevent the extinction of endangered animals in the wild. Despite low success rates of reintroduction programs few researchers have investigated empirically the efficacy of captive breeding regimes for the release of captive-bred vertebrates. We used guppies (Poecilia reticulata) from two populations in Trinidad to compare different conservation breeding regimes. The upper Aripo population was chosen for its small effective population size (N(e) approximately 100) and genetic isolation, which makes it representative of many endangered natural populations. By contrast, the lower Aripo population is a genetically diverse, much larger population (N(e) approximately 2400). We examined three captive-breeding regimes: (1) inbreeding fish crossed with their full siblings, (2) minimized inbreeding, no consanguineous matings, and (3) control fish crossed at random. We kept pedigree records for all regimes so that we could calculate inbreeding coefficients over four generations. The body size and fertility of guppies was significantly reduced due to inbreeding depression. The genetic load of sterile equivalents was particularly high for the lower Aripo population. Body size also declined due to breeding conditions in the captive environment. After four generations in captivity, the fish were released into a mesocosm in Trinidad. Captive-bred guppies were extremely susceptible to gyrodactylid parasites (58% survival rate) compared with their wild counterparts (96% survival). A reduced level of immunogenetic variation due to inbreeding and lack of exposure to natural parasites may have rendered captive-bred individuals more prone to infectious disease. The threat of disease outbreak is particularly high when naive captive-bred hosts are released in wild populations. Susceptible, captive-bred hosts could facilitate the transmission of parasites throughout the wild population, thus initiating an epidemic. This risk could potentially be reduced by prior exposure to parasites before release and gradual release of captive-bred individuals.


BMC Evolutionary Biology | 2007

Recent evolution of alternative reproductive modes in the 'living fossil' Triops cancriformis.

Thorid Zierold; Bernd Hänfling; Africa Gómez

BackgroundThe Notostraca is a small but ancient crustacean order with a contrasting combination of a conservative morphology and a wide range of reproductive modes. The tadpole shrimp Triops cancriformis, includes bisexual – the putatively ancestral state -, androdioecious and hermaphrodite populations. As hermaphroditism and androdioecy confer a colonisation advantage, we expect the postglacial colonisation of northern Europe to have been effected by lineages with such reproductive modes. Therefore, N European populations should be composed of closely related lineages reflecting a recent range expansion. In contrast, glacial refugia in the south should contain bisexual populations with high haplotype diversity and more population structuring. To test these hypotheses, we analysed the geographic distribution of reproductive modes based on new and published sex ratio data. In addition, we investigated the European phylogeography of T. cancriformis by sequencing over a 1000 bp of mitochondrial DNA (mtDNA) in individuals from a large sample of populations of the three recognised subspecies.ResultsBisexual populations were only found in the Iberian Peninsula, with the rest of European populations showing low male proportions or no males. Androdioecious populations were found in Central and Eastern Europe. Regarding mtDNA diversity, Spanish and Moroccan populations of T. c. mauritanicus were highly divergent, and showed strong population structure. In contrast, Triops c. cancriformis and T. c. simplex formed a single mtDNA lineage with low haplotype diversity. This diversity was structured into two phylogenetic clades (A, B), coexisting in E Germany. Basal haplotypes of both lineages were found in the Iberian Peninsula. Most of the populations in clade A and B are either hermaphroditic or androdioecious, with the only bisexual population in these clades found in the Iberian Peninsula. The genetic divergence between these two clades suggests a split in the Late Pleistocene and their geographic distribution reflects a complex evolutionary history of European Triops populations, with possibly two episodes of range expansions – one of them by clade A – involving androdioecious and hermaphroditic populations.ConclusionAs we predicted, N European populations of T. cancriformis are closely related, with few widely distributed haplotypes and indications of a recent range expansion involving hermaphroditic/androdioecious lineages. A possible second range expansion or long distance colonisation may have created the secondary contact zone between T. c. cancriformis/simplex clades A and B. The large haplotype diversity and strong genetic subdivision in the Iberian Peninsula, which is known to contain only bisexual populations, strongly suggest that this area was a Pleistocene refugium for T. cancriformis, although the occurrence of additional eastern refugia cannot be ruled out. Our data support the status of T. c. mauritanicus as a separate species and the colonisation of N Africa from the Iberian Peninsula. We suggest that hermaphroditism/androdioecy has evolved recently in T. cancriformis and has facilitated the postglacial colonisation of northern Europe.


PLOS ONE | 2011

Invasive Cyprinid Fish in Europe Originate from the Single Introduction of an Admixed Source Population Followed by a Complex Pattern of Spread

Andrea Simon; Robert Britton; Rodolphe E. Gozlan; Cock van Oosterhout; Filip Volckaert; Bernd Hänfling

The Asian cyprinid fish, the topmouth gudgeon (Pseudorasbora parva), was introduced into Europe in the 1960s. A highly invasive freshwater fish, it is currently found in at least 32 countries outside its native range. Here we analyse a 700 base pair fragment of the mitochondrial cytochrome b gene to examine different models of colonisation and spread within the invasive range, and to investigate the factors that may have contributed to their invasion success. Haplotype and nucleotide diversity of the introduced populations from continental Europe was higher than that of the native populations, although two recently introduced populations from the British Isles showed low levels of variability. Based on coalescent theory, all introduced and some native populations showed a relative excess of nucleotide diversity compared to haplotype diversity. This suggests that these populations are not in mutation-drift equilibrium, but rather that the relative inflated level of nucleotide diversity is consistent with recent admixture. This study elucidates the colonisation patterns of P. parva in Europe and provides an evolutionary framework of their invasion. It supports the hypothesis that their European colonisation was initiated by their introduction to a single location or small geographic area with subsequent complex pattern of spread including both long distance and stepping-stone dispersal. Furthermore, it was preceded by, or associated with, the admixture of genetically diverse source populations that may have augmented its invasive-potential.

Collaboration


Dive into the Bernd Hänfling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl D. Sayer

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Weetman

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge