Bernd Walz
University of Potsdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernd Walz.
International Review of Cytology-a Survey of Cell Biology | 2001
Otto Baumann; Bernd Walz
The endoplasmic reticulum (ER) in animal cells is an extensive, morphologically continuous network of membrane tubules and flattened cisternae. The ER is a multifunctional organelle; the synthesis of membrane lipids, membrane and secretory proteins, and the regulation of intracellular calcium are prominent among its array of functions. Many of these functions are not homogeneously distributed throughout the ER but rather are confined to distinct ER subregions or domains. This review describes the structural and functional organization of the ER and highlights the dynamic properties of the ER network and the mechanisms that support the positioning of ER membranes within the cell. Furthermore, we outline processes involved in the establishment and maintenance of an anisotropic distribution of ER-resident proteins and, thus, in the organization of the ER into functionally and morphologically different subregions.
Journal of Biological Chemistry | 2007
Martin Voss; Olga Vitavska; Bernd Walz; Helmut Wieczorek; Otto Baumann
Eukaryotic vacuolar-type H+-ATPases (V-ATPases) are regulated by the reversible disassembly of the active V1V0 holoenzyme into a cytosolic V1 complex and a membrane-bound V0 complex. The signaling cascades that trigger these events in response to changing cellular conditions are largely unknown. We report that the V1 subunit C of the tobacco hornworm Manduca sexta interacts with protein kinase A and is the only V-ATPase subunit that is phosphorylated by protein kinase A. Subunit C can be phosphorylated as single polypeptide as well as a part of the V1 complex but not as a part of the V1V0 holoenzyme. Both the phosphorylated and the unphosphorylated form of subunit C are able to reassociate with the V1 complex from which subunit C had been removed before. Using salivary glands of the blowfly Calliphora vicina in which V-ATPase reassembly and activity is regulated by the neurohormone serotonin via protein kinase A, we show that the membrane-permeable cAMP analog 8-(4-chlorophenylthio)adenosine-3′,5′-cyclic monophosphate (8-CPT-cAMP) causes phosphorylation of subunit C in a tissue homogenate and that phosphorylation is reduced by incubation with antibodies against subunit C. Similarly, incubation of intact salivary glands with 8-CPT-cAMP or serotonin leads to the phosphorylation of subunit C, but this is abolished by H-89, an inhibitor of protein kinase A. These data suggest that subunit C binds to and serves as a substrate for protein kinase A and that this phosphorylation may be a regulatory switch for the formation of the active V1V0 holoenzyme.
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 1989
Otto Baumann; Bernd Walz
SummaryThe photoreceptor cells in the honeybee drone contain an elaborate Ca2+-sequestering endoplasmic reticulum (ER). We measured Ca-oxalate formation within the ER of permeabilized retinal slices with a microphotometer and studied the kinetics of Ca2+-uptake into the ER and the properties of Ins(1,4,5)P3-induced Ca2+-release.The ATP-dependent Ca2+-uptake mechanism has a high affinity for Ca2+: Uptake rate was half maximal at Ca2+free ≈ 0.6 μM.Addition of Ins(1,4,5)P3 caused a persistent depression of Ca-oxalate formation due to Ca2+ -release from the ER. The Ins(1,4,5)P3-dependent Ca2+-release mechanism has a high affinity (half maximal rate with 0.2 μM Ins(1,4,5)P3) and a high specificity for Ins(1,4,5)P3: Ins(2,4,5)P3 was 6 times, Ins(1,3,4,5)P4 was 15 times less potent in inducing Ca2+-release. 3 μM Ins(1,4)P2 had no detectable effect. The sensitivity for Ins(1,4,5)P3 was maximal between 280 nM and 1.6 μM Ca2+free and decreased at higher and lower Ca2+-concentrations.Our data show that the ER in invertebrate photoreceptor cells is an effective Ca2+ -sink and an Ins(1,4,5)P3-sensitive Ca2+-source. We support the idea (Payne et al. 1988) that the ER-network close to the photoreceptive membrane, the submicrovillar cisternae (SMC), are the light- and Ins(1,4,5)P3-sensitive Ca2+-stores.
BMC Physiology | 2002
Otto Baumann; Petra Dames; Dana Kühnel; Bernd Walz
BackgroundThe cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types.ResultsThe acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation.ConclusionOur results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin.
PLOS ONE | 2012
Claudia Röser; Nadine Jordan; Sabine Balfanz; Arnd Baumann; Bernd Walz; Otto Baumann; Wolfgang Blenau
Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP3)/Ca2+ and cyclic adenosine 3′,5′-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT2 and 5-HT7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca2+] in a dose-dependent manner (EC50 = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP]i (EC50 = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT2α or Cv5-HT7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv5-HT2α receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT7 receptor, and clozapine (1 µM) antagonizes the effects of 5-HT via Cv5-HT7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca2+- and cAMP-signalling cascades.
Journal of Insect Physiology | 2001
Ingo Lang; Bernd Walz
K(+)- and Na(+)-selective double-barrelled microelectrodes were used for intracellular and luminal measurements in salivary ducts of Periplaneta americana. The salivary ducts were stimulated with dopamine (10(-6) mol l(-1)). Dopamine decreased intracellular [K(+)] from 112+/-17 mmol l(-1) to 40+/-13 mmol l(-1) (n=6) and increased intracellular [Na(+)] from 22+/-19 mmol l(-1) to 92+/-4 mmol l(-1) (n=6). Luminal [K(+)] was 15+/-3 mmol l(-1) in the unstimulated salivary ducts and increased to 26+/-11 mmol l(-1) upon stimulation with dopamine (n=10). Luminal [Na(+)] was insignificantly increased from 105+/-25 mmol l(-1) to 116+/-22 mmol l(-1) (n=12) by stimulation with dopamine. The potential difference across the basolateral membrane (PD(b)) was depolarized from -65+/-6 mV to -31+/-13 mV (n=12) and the transepithelial potential difference (PD(t)) was hyperpolarized from -13+/-6 mV to -22+/-7 mV (n=22, lumen negative) upon stimulation with dopamine. The re-establishment of prestimulus values of intracellular [K(+)] and [Na(+)] and PD(b) was inhibited by basolateral addition of ouabain (10(-4) mol l(-1)). Furosemide (10(-4) mol l(-1)) in the bath inhibited the dopamine-induced increase in intracellular [Na(+)], the decrease in intracellular [K(+)] and the depolarization of PD(b). We propose a model for dopamine-stimulated ion transport in the salivary ducts involving basolateral Na(+)-K(+)-2Cl(-) cotransport and active extrusion of K(+) via the apical membrane.
Journal of Insect Physiology | 2012
Otto Baumann; Bernd Walz
Vacuolar H(+)-ATPases (V-ATPases) are heteromultimeric proteins that use the energy of ATP hydrolysis for the electrogenic transport of protons across membranes. They are common to all eukaryotic cells and are located in the plasma membrane or in membranes of acid organelles. In many insect epithelia, V-ATPase molecules reside in large numbers in the apical plasma membrane and create an electrochemical proton gradient that is used for the acidification or alkalinization of the extracellular space, the secretion or reabsorption of ions and fluids, the import of nutrients, and diverse other cellular activities. Here, we summarize our results on the functions and regulation of V-ATPase in the tubular salivary gland of the blowfly Calliphora vicina. In this gland, V-ATPase activity energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). Because of particular morphological and physiological features, the blowfly salivary glands are a superior and exemplary system for the analysis of the intracellular signaling pathways and mechanisms that modulate V-ATPase activity and solute transport in an insect epithelium.
The Journal of Experimental Biology | 2004
Otto Baumann; Dana Kühnel; Petra Dames; Bernd Walz
SUMMARY The paired salivary glands in the cockroach are composed of acini with ion-transporting peripheral P-cells and protein-secreting central C-cells, and a duct system for the modification of the primary saliva. Secretory activity is controlled by serotonergic and dopaminergic neurons, whose axons form a dense plexus on the glands. The spatial relationship of release sites for serotonin and dopamine to the various cell types was determined by anti-synapsin immunofluorescence confocal microscopy and electron microscopy. Every C-cell apparently has only serotonergic synapses on its surface. Serotonergic and dopaminergic fibres on the acini have their release zones at a distance of ∼0.5 μm from the P-cells. Nerves between acinar lobules may serve as neurohaemal organs and contain abundant dopaminergic and few serotonergic release sites. Some dopaminergic and serotonergic release sites reside in the duct epithelium, the former throughout the duct system, the latter only in segments next to acini. These findings are consistent with the view that C-cells respond exclusively to serotonin, P-cells to serotonin and dopamine, and most duct cells only to dopamine. Moreover, the data suggest that C-cells are stimulated by serotonin released close to their surface, whereas P-cells and most duct cells are exposed to serotonin/dopamine liberated at some distance.
The Journal of Experimental Biology | 2006
Julia Rein; Bernhard Zimmermann; Carsten Hille; Ingo Lang; Bernd Walz; Otto Baumann
SUMMARY Secretion in blowfly salivary glands is induced by the neurohormone serotonin and powered by a vacuolar-type H+-ATPase (V-ATPase) located in the apical membrane of the secretory cells. We have established a microfluorometric method for analysing pH changes at the luminal surface of the secretory epithelial cells by using the fluorescent dye 5-N-hexadecanoyl-aminofluorescein (HAF). After injection of HAF into the lumen of the tubular salivary gland, the fatty acyl chain of the dye molecule partitions into the outer leaflet of the plasma membrane and its pH-sensitive fluorescent moiety is exposed at the cell surface. Confocal imaging has confirmed that HAF distributes over the entire apical membrane of the secretory cells and remains restricted to this membrane domain. Ratiometric analysis of HAF fluorescence demonstrates that serotonin leads to a reversible dose-dependent acidification at the luminal surface. Inhibition by concanamycin A confirms that the serotonin-induced acidification at the luminal surface is due to H+ transport across the apical membrane via V-ATPase. Measurements with pH-sensitive microelectrodes corroborate a serotonin-induced luminal acidification and demonstrate that luminal pH decreases by about 0.4 pH units at saturating serotonin concentrations. We conclude that ratiometric measurements of HAF fluorescence provide an elegant method for monitoring V-ATPase-dependent H+ transport in the blowfly salivary gland in vivo and for analysing the spatiotemporal pattern of pH changes at the luminal surface.
Cell and Tissue Research | 1998
Stephan Aschenbrenner; Bernd Walz
Abstract The leech photoreceptor forms a unicellular epithelium: every cell surrounds an extracellular “vacuole” that is connected to the remaining extracellular space via narrow clefts containing pleated septate junctions. We analyzed the complete structural layout of all septa within the junctional complex in elastic brightfield stereo electron micrographs of semithin serial sections from photoreceptors infiltrated with colloidal lanthanum. The septa form tortuous interseptal corridors that are spatially continuous, and open ended basally and apically. Individual septa seem to be impermeable to lanthanum; interseptal corridors form the only diffusional pathway for this ion. The junctions form no diffusion barrier for the electron-dense tracer Ba2+, but they hinder the diffusion of various hydrophilic fluorescent dyes as demonstrated by confocal laser scanning microscopy (CLSM) of live cells. Even those dyes that penetrate gap junctions do not diffuse beyond the septate junctions. The aqueous diffusion pathway within the septal corridors is, therefore, less permeable than the gap-junctional pore. Our morphological results combined with published electrophysiological data suggest that the septa themselves are not completely tight for small physiologically relevant ions. We also examined, by CLSM, whether the septate junctions create a permeability barrier for the lateral diffusion of fluorescent lipophilic dyes incorporated into the peripheral membrane domain. AFC16, claimed to remain in the outer membrane leaflet, does not diffuse beyond the junctional region, whereas DiIC16, claimed to flip-flop, does. Thus, pleated septate junctions, like vertebrate tight junctions, contribute to the maintenance of cell polarity.