Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernhard H. Geierstanger is active.

Publication


Featured researches published by Bernhard H. Geierstanger.


Current Biology | 2005

The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin.

Lindsey J. Macpherson; Bernhard H. Geierstanger; Veena Viswanath; Michael Bandell; Samer R. Eid; Sun Wook Hwang; Ardem Patapoutian

Garlics pungent flavor has made it a popular ingredient in cuisines around the world and throughout history. Garlics health benefits have been elevated from folklore to clinical study. Although there is some controversy as to the efficacy of garlic, garlic products are one of the most popular herbal supplements in the U.S. Chemically complex, garlic contains different assortments of sulfur compounds depending on whether the cloves are intact, crushed, cooked, or raw. Raw garlic, when cut and placed on the tongue or lips, elicits painful burning and prickling sensations through unknown mechanisms. Here, we show that raw but not baked garlic activates TRPA1 and TRPV1, two temperature-activated ion channels that belong to the transient receptor potential (TRP) family. These thermoTRPs are present in the pain-sensing neurons that innervate the mouth. We further show that allicin, an unstable component of fresh garlic, is the chemical responsible for TRPA1 and TRPV1 activation and is therefore likely to cause garlics pungency.


Angewandte Chemie | 2009

A Facile System for Encoding Unnatural Amino Acids in Mammalian Cells

Peng R. Chen; Dan Groff; Jiantao Guo; Weijia Ou; Susan E. Cellitti; Bernhard H. Geierstanger; Peter G. Schultz

A shuttle system has been developed to genetically encode unnatural amino acids in mammalian cells using aminoacyl-tRNA synthetases (aaRSs) evolved in E. coli. A pyrrolysyl-tRNA synthetase (PylRS) mutant was evolved in E. coli that selectively aminoacylates a cognate nonsense suppressor tRNA with a photocaged lysine derivative. Transfer of this orthogonal tRNA-aaRS pair into mammalian cells made possible the selective incorporation of this unnatural amino acid into proteins.


Journal of the American Chemical Society | 2008

In vivo incorporation of unnatural amino acids to probe structure, dynamics and ligand binding in a large protein by Nuclear Magnetic Resonance spectroscopy

Susan E. Cellitti; David H. Jones; Leanna Lagpacan; Xueshi Hao; Qiong Zhang; Huiyong Hu; Scott M. Brittain; Achim Brinker; Jeremy S. Caldwell; Badry Bursulaya; Glen Spraggon; Ansgar Brock; Youngha Ryu; Tetsuo Uno; Peter G. Schultz; Bernhard H. Geierstanger

In vivo incorporation of isotopically labeled unnatural amino acids into large proteins drastically reduces the complexity of nuclear magnetic resonance (NMR) spectra. Incorporation is accomplished by coexpressing an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid added to the media and the protein of interest with a TAG amber codon at the desired incorporation site. To demonstrate the utility of this approach for NMR studies, 2-amino-3-(4-(trifluoromethoxy)phenyl)propanoic acid (OCF 3Phe), (13)C/(15)N-labeled p-methoxyphenylalanine (OMePhe), and (15)N-labeled o-nitrobenzyl-tyrosine (oNBTyr) were incorporated individually into 11 positions around the active site of the 33 kDa thioesterase domain of human fatty acid synthase (FAS-TE). In the process, a novel tRNA synthetase was evolved for OCF 3Phe. Incorporation efficiencies and FAS-TE yields were improved by including an inducible copy of the respective aminoacyl-tRNA synthetase gene on each incorporation plasmid. Using only between 8 and 25 mg of unnatural amino acid, typically 2 mg of FAS-TE, sufficient for one 0.1 mM NMR sample, were produced from 50 mL of Escherichia coli culture grown in rich media. Singly labeled protein samples were then used to study the binding of a tool compound. Chemical shift changes in (1)H-(15)N HSQC, (1)H-(13)C HSQC, and (19)F NMR spectra of the different single site mutants consistently identified the binding site and the effect of ligand binding on conformational exchange of some of the residues. OMePhe or OCF 3Phe mutants of an active site tyrosine inhibited binding; incorporating (15)N-Tyr at this site through UV-cleavage of the nitrobenzyl-photocage from oNBTyr re-established binding. These data suggest not only robust methods for using unnatural amino acids to study large proteins by NMR but also establish a new avenue for the site-specific labeling of proteins at individual residues without altering the protein sequence, a feat that can currently not be accomplished with any other method.


Journal of Biomolecular NMR | 2010

Site-specific labeling of proteins with NMR-active unnatural amino acids

David H. Jones; Susan E. Cellitti; Xueshi Hao; Qiong Zhang; Michael Jahnz; Daniel Summerer; Peter G. Schultz; Tetsuo Uno; Bernhard H. Geierstanger

A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.


Structure | 2009

Structural Basis of Murein Peptide Specificity of a γ-D-glutamyl-L-diamino Acid Endopeptidase

Qingping Xu; Sebastian Sudek; Daniel McMullan; Mitchell D. Miller; Bernhard H. Geierstanger; David H. Jones; S. Sri Krishna; Glen Spraggon; Badry Bursalay; Polat Abdubek; Claire Acosta; Eileen Ambing; Tamara Astakhova; Herbert L. Axelrod; Dennis Carlton; Jonathan Caruthers; Hsiu-Ju Chiu; Thomas Clayton; Marc C. Deller; Lian Duan; Ylva Elias; Marc-André Elsliger; Julie Feuerhelm; Slawomir K. Grzechnik; Joanna Hale; Gye Won Han; Justin Haugen; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock

The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Site-specific protein modifications through pyrroline-carboxy-lysine residues

Weijia Ou; Tetsuo Uno; Hsien-Po Chiu; Jan Grunewald; Susan E. Cellitti; Tiffany Crossgrove; Xueshi Hao; Qian Fan; Lisa Quinn; Paula Patterson; Linda Okach; David H. Jones; Scott A. Lesley; Ansgar Brock; Bernhard H. Geierstanger

Pyrroline-carboxy-lysine (Pcl) is a demethylated form of pyrrolysine that is generated by the pyrrolysine biosynthetic enzymes when the growth media is supplemented with D-ornithine. Pcl is readily incorporated by the unmodified pyrrolysyl-tRNA/tRNA synthetase pair into proteins expressed in Escherichia coli and in mammalian cells. Here, we describe a broadly applicable conjugation chemistry that is specific for Pcl and orthogonal to all other reactive groups on proteins. The reaction of Pcl with 2-amino-benzaldehyde or 2-amino-acetophenone reagents proceeds to near completion at neutral pH with high efficiency. We illustrate the versatility of the chemistry by conjugating Pcl proteins with poly(ethylene glycol)s, peptides, oligosaccharides, oligonucleotides, fluorescence, and biotin labels and other small molecules. Because Pcl is genetically encoded by TAG codons, this conjugation chemistry enables enhancements of the pharmacology and functionality of proteins through site-specific conjugation.


Structure | 2012

Structure of Ddn, the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824.

Susan E. Cellitti; Jennifer Shaffer; David H. Jones; Tathagata Mukherjee; Meera Gurumurthy; Badry Bursulaya; Helena I. Boshoff; Inhee Choi; Amit Nayyar; Yong Sok Lee; Joseph Cherian; Pornwaratt Niyomrattanakit; Thomas Dick; Ujjini H. Manjunatha; Clifton E. Barry; Glen Spraggon; Bernhard H. Geierstanger

Summary Tuberculosis continues to be a global health threat, making bicyclic nitroimidazoles an important new class of therapeutics. A deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis catalyzes the reduction of nitroimidazoles such as PA-824, resulting in intracellular release of lethal reactive nitrogen species. The N-terminal 30 residues of Ddn are functionally important but are flexible or access multiple conformations, preventing structural characterization of the full-length, enzymatically active enzyme. Several structures were determined of a truncated, inactive Ddn protein core with and without bound F420 deazaflavin coenzyme as well as of a catalytically competent homolog from Nocardia farcinica. Mutagenesis studies based on these structures identified residues important for binding of F420 and PA-824. The proposed orientation of the tail of PA-824 toward the N terminus of Ddn is consistent with current structure-activity relationship data.


Nature Chemical Biology | 2011

D-Ornithine coopts pyrrolysine biosynthesis to make and insert pyrroline-carboxy-lysine

Susan E. Cellitti; Weijia Ou; Hsien-Po Chiu; Jan Grunewald; David H. Jones; Xueshi Hao; Qian Fan; Lisa Quinn; Kenneth Ng; Andrew T. Anfora; Scott A. Lesley; Tetsuo Uno; Ansgar Brock; Bernhard H. Geierstanger

D-ornithine has previously been suggested to enhance the expression of pyrrolysine-containing proteins. We unexpectedly discovered that uptake of D-ornithine results in the insertion of a new amino acid, pyrroline-carboxy-lysine (Pcl) instead of the anticipated pyrrolysine (Pyl). Our feeding and biochemical studies point to specific roles of the poorly understood Pyl biosynthetic enzymes PylC and PylD in converting L-lysine and D-ornithine to Pcl and confirm intermediates in the biosynthesis of Pyl.


Chemistry & Biology | 2002

Genomic Effects of Polyamide/DNA Interactions on mRNA Expression

Lubica Supekova; John Paul Pezacki; Andrew I. Su; Colin J. Loweth; Rainer Riedl; Bernhard H. Geierstanger; Peter G. Schultz; David E. Wemmer

Here we characterize the biological activity of a hairpin polyamide 1 that inhibits binding of the minor-groove transcription factor LEF-1, constitutively expressed in colon cancers. Genome-wide analysis of mRNA expression in DLD1 colon cancer cells treated with 1 reveals that a limited number of genes are affected; the most significant changes correspond to genes related to cell cycle, signaling, and proteolysis rather than the anticipated WNT signaling pathway. Treated cells display increased doubling time and hypersensitivity to DNA damage that most likely results from downregulation of DNA-damage checkpoint genes, including YWAE (14-3-3epsilon protein) and DDIT3. Promoter analyses on a genomic level revealed numerous potential polyamide binding sites and multiple possible mechanisms for transcriptional antagonism, underscoring the utility of gene expression profiling in understanding the effects of polyamides on transcription at the cellular level.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Loss of CD4 T-cell–dependent tolerance to proteins with modified amino acids

Varun Gauba; Jan Grünewald; Vanessa Gorney; Lisa M. Deaton; Mingchao Kang; Badry Bursulaya; Weijia Ou; Richard A. Lerner; Christian Schmedt; Bernhard H. Geierstanger; Peter G. Schultz; Teresa Ramirez-Montagut

The site-specific incorporation of the unnatural amino acid p-nitrophenylalanine (pNO2Phe) into autologous proteins overcomes self-tolerance and induces a long-lasting polyclonal IgG antibody response. To determine the molecular mechanism by which such simple modifications to amino acids are able to induce autoantibodies, we incorporated pNO2Phe, sulfotyrosine (SO3Tyr), and 3-nitrotyrosine (3NO2Tyr) at specific sites in murine TNF-α and EGF. A subset of TNF-α and EGF mutants with these nitrated or sulfated residues is highly immunogenic and induces antibodies against the unaltered native protein. Analysis of the immune response to the TNF-α mutants in different strains of mice that are congenic for the H-2 locus indicates that CD4 T-cell recognition is necessary for autoantibody production. IFN-γ ELISPOT analysis of CD4 T cells isolated from vaccinated mice demonstrates that peptides with mutated residues, but not the wild-type residues, are recognized. Immunization of these peptides revealed that a CD4 repertoire exists for the mutated peptides but is lacking for the wild-type peptides and that the mutated residues are processed, loaded, and presented on the I-Ab molecule. Overall, our results illustrate that, although autoantibodies are generated against the endogenous protein, CD4 cells are activated through a neo-epitope recognition mechanism. Therefore, tolerance is maintained at a CD4 level but is broken at the level of antibody production. Finally, these results suggest that naturally occurring posttranslational modifications such as nitration may play a role in antibody-mediated autoimmune disorders.

Collaboration


Dive into the Bernhard H. Geierstanger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter G. Schultz

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tetsuo Uno

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Susan E. Cellitti

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Tammy J. Dwyer

University of California

View shared research outputs
Top Co-Authors

Avatar

Weijia Ou

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Ansgar Brock

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Badry Bursulaya

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

David H. Jones

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge