Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernhard Korn is active.

Publication


Featured researches published by Bernhard Korn.


Cell | 2005

A human protein-protein interaction network : A resource for annotating the proteome

Ulrich Stelzl; Uwe Worm; Maciej Lalowski; Felix H. Brembeck; Heike Goehler; Martin Stroedicke; Martina Zenkner; Anke Schoenherr; Susanne Koeppen; Jan Timm; Sascha Mintzlaff; Claudia Abraham; Nicole Bock; Silvia Kietzmann; Astrid Goedde; Engin Toksöz; Anja Droege; Sylvia Krobitsch; Bernhard Korn; Walter Birchmeier; Hans Lehrach; Erich Wanker

Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.


American Journal of Human Genetics | 2011

Tobacco-Smoking-Related Differential DNA Methylation: 27K Discovery and Replication

Lutz P. Breitling; Rongxi Yang; Bernhard Korn; Barbara Burwinkel; Hermann Brenner

Tobacco smoking is responsible for substantial morbidity and mortality worldwide, in particular through cardiovascular, pulmonary, and malignant pathology. CpG methylation might plausibly play a role in a variety of smoking-related phenomena, as suggested by candidate gene promoter or global methylation studies. Arrays allowing hypothesis-free searches on a scale resembling genome-wide studies of SNPs have become available only very recently. Methylation extents in peripheral-blood DNA were assessed at 27,578 sites in more than 14,000 gene promoter regions in 177 current smokers, former smokers, and those who had never smoked, with the use of the Illumina HumanMethylation 27K BeadChip. This revealed a single locus, cg03636183, located in F2RL3, with genome-wide significance for lower methylation in smokers (p = 2.68 × 10(-31)). This was similarly significant in 316 independent replication samples analyzed by mass spectrometry and Sequenom EpiTyper (p = 6.33 × 10(-34)). Our results, which were based on a rigorous replication approach, show that the gene coding for a potential drug target of cardiovascular importance features altered methylation patterns in smokers. To date, this gene had not attracted attention in the literature on smoking.


Nature Genetics | 1997

DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is deleted in malignant brain tumours

Jan Mollenhauer; Stefan Wiemann; Wolfram Scheurlen; Bernhard Korn; Yutaka Hayashi; Klaus K. Wilgenbus; Andreas von Deimling; Annemarie Poustka

Loss of sequences from human chromosome 10q has been associated with the progression of human cancer. Medulloblastoma and glioblastoma multiforme are the most common malignant brain tumours in children and adults, respectively. In glioblastoma multiforme, the most aggressive form, 80% of the tumours show loss of 10q. We have used representational difference analysis to identify a homozygous deletion at 10q25.3–26.1 in a medulloblastoma cell line and have cloned a novel gene, DMBT1, spanning this deletion. DMBT1 shows homology to the scavenger receptor cysteine-rich (SRCR) superfamily. Intragenic homozygous deletions have been detected in 2/20 medulloblastomas and in 9/39 glioblastomas multiformes. Lack of DMBT1 expression has been demonstrated in 4/5 brain-tumour cell lines. We suggest that DMBT1 is a putative tumour-suppressor gene implicated in the carcinogenesis of medulloblastoma and glioblastoma multiforme.


Aging Cell | 2010

DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells

Simone Bork; Stefan M. Pfister; Hendrik Witt; Patrick Horn; Bernhard Korn; Anthony D. Ho; Wolfgang Wagner

Within 2–3 months of in vitro culture‐expansion, mesenchymal stromal cells (MSC) undergo replicative senescence characterized by cell enlargement, loss of differentiation potential and ultimate growth arrest. In this study, we have analyzed DNA methylation changes upon long‐term culture of MSC by using the HumanMethylation27 BeadChip microarray assessing 27 578 unique CpG sites. Furthermore, we have compared MSC from young and elderly donors. Overall, methylation patterns were maintained throughout both long‐term culture and aging but highly significant differences were observed at specific CpG sites. Many of these differences were observed in homeobox genes and genes involved in cell differentiation. Methylation changes were verified by pyrosequencing after bisulfite conversion and compared to gene expression data. Notably, methylation changes in MSC were overlapping in long‐term culture and aging in vivo. This supports the notion that replicative senescence and aging represent developmental processes that are regulated by specific epigenetic modifications.


Nature Methods | 2007

ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome

Michael J. Taussig; Oda Stoevesandt; Carl Borrebaeck; Andrew Bradbury; Dolores J. Cahill; Christian Cambillau; Antoine de Daruvar; Stefan Dübel; Jutta Eichler; Ronald Frank; Toby J. Gibson; David E. Gloriam; Larry Gold; Friedrich W. Herberg; Henning Hermjakob; Jörg D. Hoheisel; Thomas O. Joos; Olli Kallioniemi; Manfred Koegl; Zoltán Konthur; Bernhard Korn; Elisabeth Kremmer; Sylvia Krobitsch; Ulf Landegren; Silvère M. van der Maarel; John McCafferty; Serge Muyldermans; Per-Åke Nygren; Sandrine Palcy; Andreas Plückthun

ProteomeBinders is a new European consortium aiming to establish a comprehensive resource of well-characterized affinity reagents, including but not limited to antibodies, for analysis of the human proteome. Given the huge diversity of the proteome, the scale of the project is potentially immense but nevertheless feasible in the context of a pan-European or even worldwide coordination.


Genome Research | 2001

Toward a Catalog of Human Genes and Proteins: Sequencing and Analysis of 500 Novel Complete Protein Coding Human cDNAs

Stefan Wiemann; Bernd Weil; Ruth Wellenreuther; Johannes Gassenhuber; Sabine Glassl; Wilhelm Ansorge; Michael Böcher; Helmut Blöcker; Stefan Bauersachs; Helmut Blum; Jürgen Lauber; Andreas Düsterhöft; Andreas Beyer; Karl Köhrer; Normann Strack; Hans Werner Mewes; Birgit Ottenwälder; Brigitte Obermaier; Jens Tampe; Dagmar Heubner; Rolf Wambutt; Bernhard Korn; Michaela Klein; Annemarie Poustka

With the complete human genomic sequence being unraveled, the focus will shift to gene identification and to the functional analysis of gene products. The generation of a set of cDNAs, both sequences and physical clones, which contains the complete and noninterrupted protein coding regions of all human genes will provide the indispensable tools for the systematic and comprehensive analysis of protein function to eventually understand the molecular basis of man. Here we report the sequencing and analysis of 500 novel human cDNAs containing the complete protein coding frame. Assignment to functional categories was possible for 52% (259) of the encoded proteins, the remaining fraction having no similarities with known proteins. By aligning the cDNA sequences with the sequences of the finished chromosomes 21 and 22 we identified a number of genes that either had been completely missed in the analysis of the genomic sequences or had been wrongly predicted. Three of these genes appear to be present in several copies. We conclude that full-length cDNA sequencing continues to be crucial also for the accurate identification of genes. The set of 500 novel cDNAs, and another 1000 full-coding cDNAs of known transcripts we have identified, adds up to cDNA representations covering 2%--5 % of all human genes. We thus substantially contribute to the generation of a gene catalog, consisting of both full-coding cDNA sequences and clones, which should be made freely available and will become an invaluable tool for detailed functional studies.


PLOS Genetics | 2010

Aging and chronic sun exposure cause distinct epigenetic changes in human skin.

Elke Grönniger; Barbara Weber; Oliver Heil; Nils Peters; Franz Stäb; Horst Wenck; Bernhard Korn; Marc Winnefeld; Frank Lyko

Epigenetic changes are widely considered to play an important role in aging, but experimental evidence to support this hypothesis has been scarce. We have used array-based analysis to determine genome-scale DNA methylation patterns from human skin samples and to investigate the effects of aging, chronic sun exposure, and tissue variation. Our results reveal a high degree of tissue specificity in the methylation patterns and also showed very little interindividual variation within tissues. Data stratification by age revealed that DNA from older individuals was characterized by a specific hypermethylation pattern affecting less than 1% of the markers analyzed. Interestingly, stratification by sun exposure produced a fundamentally different pattern with a significant trend towards hypomethylation. Our results thus identify defined age-related DNA methylation changes and suggest that these alterations might contribute to the phenotypic changes associated with skin aging.


Circulation-cardiovascular Genetics | 2011

Targeted Next-Generation Sequencing for the Molecular Genetic Diagnostics of Cardiomyopathies

Benjamin Meder; Jan Haas; Andreas Keller; Christiane Heid; Steffen Just; Anne Borries; Valesca Boisguerin; Maren Scharfenberger-Schmeer; Peer F. Stähler; Markus Beier; Dieter Weichenhan; Tim M. Strom; Arne Pfeufer; Bernhard Korn; Hugo A. Katus; Wolfgang Rottbauer

Background—Today, mutations in more than 30 different genes have been found to cause inherited cardiomyopathies, some associated with very poor prognosis. However, because of the genetic heterogeneity and limitations in throughput and scalability of current diagnostic tools up until now, it is hardly possible to genetically characterize patients with cardiomyopathy in a fast, comprehensive, and cost-efficient manner. Methods and Results—We established an array-based subgenomic enrichment followed by next-generation sequencing to detect mutations in patients with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). With this approach, we show that the genomic region of interest can be enriched by a mean factor of 2169 compared with the coverage of the whole genome, resulting in high sequence coverage of selected disease genes and allowing us to define the genetic pathogenesis of cardiomyopathies in a single sequencing run. In 6 patients, we detected disease-causing mutations, 2 microdeletions, and 4 point mutations. Furthermore, we identified several novel nonsynonymous variants, which are predicted to be harmful, and hence, might be potential disease mutations or modifiers for DCM or HCM. Conclusions—The approach presented here allows for the first time a comprehensive genetic screening in patients with hereditary DCM or HCM in a fast and cost-efficient manner.


Blood | 2009

New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling

José I. Martín-Subero; Markus Kreuz; Marina Bibikova; Stefan Bentink; Ole Ammerpohl; Eliza Wickham-Garcia; Maciej Rosolowski; Julia Richter; Lidia Lopez-Serra; Esteban Ballestar; Hilmar Berger; Xabier Agirre; Heinz-Wolfram Bernd; Vincenzo Calvanese; Sergio Cogliatti; Hans G. Drexler; Jian-Bing Fan; Mario F. Fraga; Martin Leo Hansmann; Michael Hummel; Wolfram Klapper; Bernhard Korn; Ralf Küppers; Roderick A. F. MacLeod; Peter Möller; German Ott; Christiane Pott; Felipe Prosper; Andreas Rosenwald; Carsten Schwaenen

Lymphomas are assumed to originate at different stages of lymphocyte development through chromosomal aberrations. Thus, different lymphomas resemble lymphocytes at distinct differentiation stages and show characteristic morphologic, genetic, and transcriptional features. Here, we have performed a microarray-based DNA methylation profiling of 83 mature aggressive B-cell non-Hodgkin lymphomas (maB-NHLs) characterized for their morphologic, genetic, and transcriptional features, including molecular Burkitt lymphomas and diffuse large B-cell lymphomas. Hierarchic clustering indicated that methylation patterns in maB-NHLs were not strictly associated with morphologic, genetic, or transcriptional features. By supervised analyses, we identified 56 genes de novo methylated in all lymphoma subtypes studied and 22 methylated in a lymphoma subtype-specific manner. Remarkably, the group of genes de novo methylated in all lymphoma subtypes was significantly enriched for polycomb targets in embryonic stem cells. De novo methylated genes in all maB-NHLs studied were expressed at low levels in lymphomas and normal hematopoietic tissues but not in nonhematopoietic tissues. These findings, especially the enrichment for polycomb targets in stem cells, indicate that maB-NHLs with different morphologic, genetic, and transcriptional background share a similar stem cell-like epigenetic pattern. This suggests that maB-NHLs originate from cells with stem cell features or that stemness was acquired during lymphomagenesis by epigenetic remodeling.


Bioinformatics | 2004

Genome wide identification and classification of alternative splicing based on EST data

Shobhit Gupta; Dorothea Zink; Bernhard Korn; Martin Vingron; Stefan A. Haas

MOTIVATION Alternative splicing is currently seen to explain the vast disparity between the number of predicted genes in the human genome and the highly diverse proteome. The mapping of expressed sequences tag (EST) consensus sequences derived from the GeneNest database onto the genome provides an efficient way of predicting exon-intron boundaries, gene structure and alternative splicing events. However, the alternative splicing events are obscured by a large number of putatively artificial exon boundaries arising due to genomic contamination or alignment errors. The current work describes a methodology to associate quality values to the predicted exon-intron boundaries. High quality exon-intron boundaries are used to predict constitutive and alternative splicing ranked by confidence values, aiming to facilitate large-scale analysis of alternative splicing and splicing in general. RESULTS Applying the current methodology, constitutive splicing is observed in 33,270 EST clusters, out of which 45% are alternatively spliced. The classification derived from the computed confidence values for 17 of these splice events frequently correlate (15/17) with RT-PCR experiments performed for 40 different tissue samples. As an application of the confidence measure, an evaluation of distribution of alternative splicing revealed that majority of variants correspond to the coding regions of the genes. However, still a significant fraction maps to non-coding regions, thereby indicating a functional relevance of alternative splicing in untranslated regions. AVAILABILITY The predicted alternative splice variants are visualized in the SpliceNest database at http://splicenest.molgen.mpg.de

Collaboration


Dive into the Bernhard Korn's collaboration.

Top Co-Authors

Avatar

Annemarie Poustka

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Stefan Wiemann

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Manfred Koegl

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Petra Kioschis

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge