Bernhard Pospichal
University of Cologne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernhard Pospichal.
Journal of Applied Meteorology | 2004
C. D. Whiteman; Thomas Haiden; Bernhard Pospichal; Stefan Eisenbach; Reinhold Steinacker
Abstract Air temperature data from five enclosed limestone sinkholes of various sizes and shapes on the Hetzkogel Plateau near Lunz, Austria (1300 m MSL), have been analyzed to determine the effect of sinkhole geometry on temperature minima, diurnal temperature ranges, temperature inversion strengths, and vertical temperature gradients. Data were analyzed for a non-snow-covered October night and for a snow-covered December night when the temperature fell as low as −28.5°C. A surprising finding is that temperatures were similar in two sinkholes with very different drainage areas and depths. A three-layer model was used to show that the sky-view factor is the most important topographic parameter controlling cooling for basins in this size range in near-calm, clear-sky conditions and that the cooling slows when net longwave radiation at the floor of the sinkhole is nearly balanced by the ground heat flux.
Journal of Applied Meteorology | 2004
C. David Whiteman; Bernhard Pospichal; Stefan Eisenbach; Philipp Weihs; Craig B. Clements; Reinhold Steinacker; Erich Mursch-Radlgruber; Manfred Dorninger
Comparisons are made between the postsunrise breakup of temperature inversions in two similar closed basins in very different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, highaltitude, limestone sinkholes have both experienced extreme temperature minima below 2508C and both develop strong nighttime inversions. On undisturbed clear nights, temperature inversions reach to 120-m heights in both sinkholes but are much stronger in the drier Rocky Mountain basin (24 vs 13 K). Inversion destruction takes place 2.6‐3 h after sunrise in these basins and is accomplished primarily by subsidence warming associated with the removal of air from the base of the inversion by the upslope flows that develop over heated sidewalls. A conceptual model of this destruction is presented, emphasizing the asymmetry of the boundary layer development around the basin and the effects of solar shading by the surrounding ridgeline. Differences in inversion strengths and postsunrise heating rates between the two basins are caused by differences in the surface energy budget, with drier soil and a higher sensible heat flux in the Rocky Mountain sinkhole. Inversions in the small basins break up more quickly following sunrise than for previously studied valleys. The pattern of inversion breakup in the non-snow-covered basins is the same as that reported in snow-covered Colorado valleys. The similar breakup patterns in valleys and basins suggest that along-valley wind systems play no role in the breakups, since the small basins have no along-valley wind system.
Journal of Geophysical Research | 2008
Jacques Pelon; Marc Mallet; Armand Mariscal; Philippe Goloub; D. Tanré; D. Bou Karam; Cyrille Flamant; James M. Haywood; Bernhard Pospichal; S. Victori
Microlidar observations have been performed at the Djougou-Nangatchori site in northern Benin during the African Monsoon Multidisciplinary Analysis (AMMA) Special Observation Period 0 in the dry season, combined with the Dust and Biomass-Burning Experiment (DABEX) from mid-January to mid-February 2006. During the dry season, the Djougou area is a region where biomass burning aerosols are heavily produced from agriculture fires. The aerosol vertical distribution is also controlled by dynamics, and the penetration of the winter monsoon flux to the north and northern winds bringing mineral dust to the South leads to a frontal discontinuity location close to Djougou latitude. During the early dry season, the aerosol vertical distribution was observed to be structured in two layers, the lower being the boundary layer reaching altitudes up to 2 km and the upper one corresponding to the trade wind layer extending up to 5 km. Lidar data are used to retrieve the time evolution and vertical profile of extinction and discuss transport processes during the period analyzed. As the monsoon flux during the dry season is steadily progressing to the north but also moving back and forth according to shorter timescale forcings, biomass burning particles are transported from the boundary layer into the upper troposphere. This transport has a strong impact on the distribution of aerosol particles on the vertical, and extinction values larger than 0.3 km−1 have been retrieved at altitudes close to 3 km. A particular event of biomass burning air mass outbreak associated with a synoptic forcing is studied, where satellite observations are used to discuss observations of biomass burning particles over Djougou and at the regional scale.
Bulletin of the American Meteorological Society | 2007
Reinhold Steinacker; C. D. Whiteman; Manfred Dorninger; Bernhard Pospichal; Stefan Eisenbach; A. M. Holzer; Philipp Weihs; Erich Mursch-Radlgruber; K. Baumann
Abstract Because sinkholes are an excellent natural laboratory for studying processes leading to the formation, maintenance, and dissipation of temperature inversions, an extended set of meteorological field experiments was conducted in limestone sinkholes of various sizes and shapes in the eastern Alps during the period from 17 October 2001 through 4 June 2002. The experiments were conducted in an area surrounding the Gruenloch Sinkhole, which in earlier years had recorded the lowest surface minimum temperature in Central Europe, −52.6°C. A dense array of surface temperature sensors and three automatic weather stations were operated continuously during the experimental period, and special experiments enhanced with tethersondes and other equipment were conducted from 2 to 4 June 2002. An overview of the experiments is presented and first results are given.
Journal of Applied Meteorology | 2004
C. David Whiteman; Stefan Eisenbach; Bernhard Pospichal; Reinhold Steinacker
Abstract Tethered balloon soundings from two sites on the floor of a 1-km-diameter limestone sinkhole in the eastern Alps are compared with pseudovertical temperature “soundings” from three lines of temperature dataloggers on the basins northwest, southwest, and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudovertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air that spills out of the basin through the lowest-altitude saddle. On a windy night, standard deviations increased to 1°–2°C. After sunrise, the varying exposures of the dataloggers to sunlight made the pseudovertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high-static-sta...
Journal of Applied Meteorology and Climatology | 2011
Manfred Dorninger; C. David Whiteman; Benedikt Bica; Stefan Eisenbach; Bernhard Pospichal; Reinhold Steinacker
Meteorological events affecting the evolution of temperature inversions or cold-air pools in the 1-km-diameter, high-altitude (;1300 m MSL) Grunloch basin in the eastern Alps are investigated using data from lines of temperature dataloggers running up the basin sidewalls, nearby weather stations, and weather charts. Nighttime cold-air-pool events observed from October 2001 to June 2002 are categorized into undisturbed inversion evo- lution, late buildups, early breakups, mixing events, layered erosion at the inversion top, temperature disturbances occurring in the lower or upper elevations of the pool, and inversion buildup caused by the temporary clearing of clouds. In addition, persistent multiday cold-air pools are sometimes seen. Analyses show that strong winds and cloud cover are the governing meteorological parameters that cause the inversion behavior to deviate from its undisturbed state, but wind direction can also play an important role in the life cycle of the cold-air pools, because it governs the interaction with steep or gentle slopes of theunderlying topography. Undisturbed cold-air pools are unusual in the Grunloch basin. A schematic diagram illustrates the different types of cold-air-pool events.
Meteorologische Zeitschrift | 2007
Bernhard Pospichal; Susanne Crewell
Boundary layer measurements in Nangatchori, Benin were performed over the period of one full year (2006) using a novel ground-based microwave profiler and additional remote-sensing instruments. In this paper, the diurnal cycle of the ITD (Inter-Tropical Discontinuity) in the transition period between dry and wet season during the month of April is described in detail. Dry air masses from the north (Sahel) and moist air from the south (tropical Atlantic Ocean) cause very sharp temperature and humidity gradients in the low troposphere over West Africa. Continuous observations of these phenomena in terms of temperature and humidity profiles have been achieved for the first time with a high temporal resolution of less than 15 minutes. Especially the ability of the microwave radiometer to provide temperature profiles with high vertical resolution through multi-angle measurements gives detailed boundary layer information in conjunction with meteorological tower observations. Together with additional lidar ceilometer observations of aerosol backscatter the change of air masses can be seen very well. The high data availability of > 85 % allows a statistical analysis of the full month of April in which Nangatchori comes increasingly under the influence of tropical air. Thus the data set is well suited for an improved process understanding, model evaluation in a data sparse area, and possibly together with additional observations the development of improved boundary layer parameterizations for atmospheric models.
Journal of Geophysical Research | 2014
M. Brückner; Bernhard Pospichal; Andreas Macke; Manfred Wendisch
Within the German Leibniz-network OCEANET project, ship-based lidar and microwave remote sensing as well as spectral zenith radiance observations with the COmpact RAdiation measurements System (CORAS) were performed. During three cruises latitudes between 50°N and 50°S were covered. A new spectral retrieval method to derive the cloud optical thickness τ and the droplet effective radius reff using CORAS measurements is developed. The method matches CORAS measurements of ratios of spectral transmissivity at six wavelengths with modeled transmissivities. This retrieval is fast and accurate and thus suitable for operational purposes. The new approach circumvents ambiguities of existing cloud retrievals and reduces the influence of measurement uncertainties. It is applied to homogenous and heterogeneous liquid water and cirrus clouds. In boundary layer liquid water clouds, the retrieved effective radius was more variable, whereas in the cirrus it was rather constant. Furthermore, the liquid water path LWP was derived and compared to data from a microwave radiometer. The new retrieval tends to overestimate LWP for thick liquid water clouds but slightly underestimate LWP for thin clouds. The presented method cannot be applied to mixed-phase clouds. The maximum retrieval of τ and reff for liquid water clouds is 80 in τ and 30 μm in reff, respectively; for cirrus clouds the limitations of the retrieval are 10 in τ and 60 μm in reff.
Remote Sensing of Clouds and the Atmosphere XX | 2015
Daniel Merk; Hartwig Deneke; Bernhard Pospichal; Patric Seifert
Aerosol indirect effects are poorly understand and constitute a highly uncertain anthropogenic forcing of climate change. The interaction of aerosols with clouds together with entrainment and turbulent mixing processes modulate cloud microphysics and radiative effects. In the current study we present preliminary results to diagnose indirect aerosol effects from the synergy of geostationary satellite observations, surface observations and MACC aerosol analysis. We examine if the sub-adiabatic factor - representative for entrainment - can be obtained from the combination of passive-satellite observations with ground-based cloud base height from a ceilometer network. Therefore the uncertainty of the sub-adiabatic factor due to its required input parameters, the cloud geometrical thickness and liquid water path, is explored. We use a two year dataset from SEVIRI and compare it to the LACROS supersite at Leipzig, Germany. We find that the comparison of satellite-retrieved cloud top heights shows a RMSD of 1100 m and the liquid water path of 75 gm-2, which are too large to provide a meaningful estimate of the instantaneous sub-adiabtic factor. Linking the cloud microphysical properties from passive satellites with aerosol properties obtained from MACC, we investigate the Twomey hypothesis, namely that smaller droplets and a higher cloud droplet number concentration result from higher aerosol load for a given liquid water path (positive change). A positive relative change is obtained for aerosol optical depth and the sulphate mass integrated from the surface to the cloud top. In contrast, a negative relative change is however found for sea salt.
RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS) | 2013
M. Brueckner; Andreas Macke; Manfred Wendisch; T. Kanitz; Bernhard Pospichal
Within the scope of the OCEANET-Project (autonomous measurement platforms for energy and material exchange between ocean and atmosphere) on board of the research vessel Polarstern clouds have been investigated over the Atlantic Ocean under different atmospheric conditions and climate zones by active and passive remote sensing. An existing measurement platform, including lidar, microwave radiometer, all sky camera and broadband radiation sensors, has been extended by spectral radiation measurements with the COmpact RAdiation measurements System (CORAS). CORAS measures spectral downward radiances and irradiances in the visible to near-infrared wavelength region. The data were corrected to consider the movements of the ship and with it the misalignment of the sensor plane from earth’s horizon. Using observed and modeled spectral transmitted radiances cloud properties such as cloud optical thickness (τ) and effective radius (reff) were retrieved. The vertical cloud structure with limitations for thick clouds ...