Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernhard Schartel is active.

Publication


Featured researches published by Bernhard Schartel.


Materials | 2010

Phosphorus-based Flame Retardancy Mechanisms—Old Hat or a Starting Point for Future Development?

Bernhard Schartel

Different kinds of additive and reactive flame retardants containing phosphorus are increasingly successful as halogen-free alternatives for various polymeric materials and applications. Phosphorus can act in the condensed phase by enhancing charring, yielding intumescence, or through inorganic glass formation; and in the gas phase through flame inhibition. Occurrence and efficiency depend, not only on the flame retardant itself, but also on its interaction with pyrolysing polymeric material and additives. Flame retardancy is sensitive to modification of the flame retardant, the use of synergists/adjuvants, and changes to the polymeric material. A detailed understanding facilitates the launch of tailored and targeted development.


Polymer Degradation and Stability | 2003

Polypropylene-graft-maleic anhydride-nanocomposites: I—Characterization and thermal stability of nanocomposites produced under nitrogen and in air

Adams Tidjani; Oliver Wald; Martina-M. Pohl; Manfred P. Hentschel; Bernhard Schartel

Abstract The morphology and thermal behaviour of polypropylene–graft–maleic anhydride (PP–g–MA) layered silicate (montmorillonite) nanocomposites were investigated using X-ray diffraction, transmission electron microscopy, differential scanning calorimetry and thermogravimetry. The study focuses on the influence of the presence of oxygen during the preparation of PP–g–MA–nanocomposite using two different modified clays. The nanocomposites show tactoid, intercalated and exfoliated structures side by side with different dominant states depending on the clay used and on the processing conditions. The systems are described as multi-component blends rather than binary blends since the organic ions do not only change the mixing behaviour, but also influence material properties. Beside the physical barrier property of the clay layers also chemical processes were found to play an important role.


Journal of Fire Sciences | 2005

Effect of Red Phosphorus and Melamine Polyphosphate on the Fire Behavior of HIPS

Ulrike Braun; Bernhard Schartel

Pyrolysis and fire behavior of high impact polystyrene (HIPS) containing red phosphorus and melamine polyphosphate were investigated. The thermal and thermo-oxidative decomposition were characterized using thermogravimetry coupled with FTIR and MS, respectively. The fire behavior was monitored with a cone calorimeter using different external heat fluxes and determining the LOI. Red phosphorus reduced the heat release in HIPS due to radical trapping in the gas phase. The reduction in effective heat of combustion was accompanied by an increase of incomplete combustion products such as smoke and carbon monoxide. Melamine polyphosphate in HIPS acted in the condensed phase with barrier formation. The heat release rate was reduced, whereas the total heat evolved, smoke and carbon monoxide formation were not influenced significantly. Using both fire retardants, the resulting fire retardancy was characterized mainly by superposition.


Polymer Chemistry | 2014

Hyperbranched poly(phosphoester)s as flame retardants for technical and high performance polymers

Karoline Täuber; Filippo Marsico; Frederik R. Wurm; Bernhard Schartel

A structurally novel hyperbranched halogen-free poly(phosphoester) (hbPPE) is proposed as a flame retardant in poly(ester)s and epoxy resins. hb polymeric flame retardants combine several advantages that make them an extraordinary approach for future flame retardants. hbPPE was synthesized by olefin metathesis polymerization according to a straightforward two-step protocol. The impact of hbPPE on pyrolysis, flammability (reaction-to-small-flame), and fire behavior under forced flaming conditions (cone calorimeter) was investigated for a model substance representing poly(ester)s, i.e. ethyl 4-hydroxybenzoate, and an epoxy resin of bisphenol A diglycidyl ether cured with isophorone diamine. The flame retardancy performance and mechanisms are discussed and compared to a commercial bisphenol A bis(diphenyl phosphate) (BDP). Both hbPPE and BDP combined gas-phase and condensed-phase activity; hbPPE is the more efficient flame retardant, and is proposed to be efficient in a greater variety of polymeric matrices. The hydrolysis of hbPPE is suggested to produce phosphorous acids, which, when available at the right temperatures, enhance the charring of the polymer in the condensed phase. The better fire protection behavior of the hbPPE is due not only to its higher phosphorus content, but also to the higher efficiency of the phosphorus it contains.


E-polymers | 2010

Fire retardancy effect of aluminium phosphinate and melamine polyphosphate in glass fibre reinforced polyamide 6

Ulrike Braun; Horst Bahr; Bernhard Schartel

Abstract The fire retardancy mechanism of aluminium diethyl phosphinate (AlPi) and AlPi in combination with melamine polyphosphate (MPP) was investigated in glass-fibre reinforced polyamide 6 (PA6/GF) by analysing the pyrolysis, flammability and fire behaviour. AlPi in PA6/GF-AlPi partly vaporises as AlPi and partly decomposes to volatile diethylphosphinic acid (subsequently called phosphinic acid) and aluminium phosphate residue. In fire a predominant gasphase action was observed, but the material did not reach a V-0 classification for the moderate additive content used. For the combination of both AlPi and MPP in PA6/GF-AlPi-MPP a synergistic effect occurred, because of the reaction of MPP with AlPi. Aluminium phosphate is formed in the residue and melamine and phosphinic acid are released in the gas phase. The aluminium phosphate acts as a barrier for fuel and heat transport, whereas the melamine release results in fuel dilution and the phosphinic acid formation in flame inhibition. The higher amount of aluminium phosphate in PA6/GF-AlPi-MPP stabilised the residue in flammability tests in comparison to PA6/GF-AlPi, so that this material achieved a V-0 classification in the UL 94 test.


E-polymers | 2014

Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites

Sven Brehme; Thomas Köppl; Bernhard Schartel; Volker Altstädt

Abstract Aluminium diethylphosphinate (AlPi-Et) and inorganic aluminium phosphinate with resorcinol-bis(di-2,6-xylyl phosphate) (AlPi-H+RXP) were compared with each other as commercially available halogen-free flame retardants in poly(butylene terephthalate) (PBT) as well as in glass-fibre-reinforced PBT (PBT/GF). Pyrolysis behaviour and flame retardancy performance are reported in detail. AlPi-H+RXP released phosphine at very low temperatures, which can become a problem during processing. AlPi-Et provided better limiting oxygen index (LOI) values and UL 94 ratings for bulk and PBT/GF than AlPi-H+RXP. Both flame retardants acted via three different flame-retardancy mechanisms in bulk as well as in PBT/GF, namely, flame inhibition, increased amount of char, and a protection effect of the char. AlPi-Et was more efficient in decreasing the total heat evolved of PBT in the cone calorimeter test. AlPi-H+RXP reduced the peak heat release rate of PBT more efficiently than AlPi-Et. An optimum loading of AlPi-Et in PBT/GF was found, which was below the supplier’s recommendation. This loading provides a maximum increase in LOI and a maximum decrease in total heat evolved.


Journal of Fire Sciences | 2012

Synergistic fire retardancy in layered-silicate nanocomposite combined with low-melting phenysiloxane glass

Guang Mei Wu; Bernhard Schartel; Dan Yu; Malte Kleemeier; Andreas Hartwig

Tetraphenyl phosphonium-modified layered silicate (LS) and low-melting phenylsiloxane glass (G) are combined for more efficient halogen-free flame retardancy in epoxy resin (EP_LSG). Particularly, the peak heat release rate (PHRR) is decreased (by up to 60%), but levels off at additive concentrations ≥10 wt%. The performance of EP_LSG is compared to EP_LS and EP_G assuming an absolute and a relative flame retardancy effect, respectively, and based on the same amount of each filler and, alternatively, with EP_G containing the same overall amount of filler. EP_LSG behaves close to superposition but shows a strong tendency toward synergism due to a superior structural integrity of the fire residues. Apart from LS, adding G in particular is a promising approach when its content is ≤5 wt%, as is LSG for ≥10 wt%.


Journal of Fire Sciences | 2015

Halogen-free fire retardant styrene–ethylene–butylene–styrene-based thermoplastic elastomers using synergistic aluminum diethylphosphinate–based combinations

Kirsten Langfeld; Antje Wilke; Aleksandra Sut; Sebastian Greiser; Bernhard Ulmer; Vlad Andrievici; Patrick Limbach; Martin Bastian; Bernhard Schartel

Multicomponent flame retardant systems containing aluminum diethylphosphinate in thermoplastic styrene–ethylene–butylene–styrene elastomers are investigated (oxygen index, UL 94, cone calorimeter, and mechanical testing). Solid-state nuclear magnetic resonance, scanning electron microscopy, and elemental analysis illuminate the interactions in the condensed phase. Thermoplastic styrene–ethylene–butylene–styrene elastomers are a challenge for flame retardancy (peak heat release rate at 50 kW m−2 > 2000 kW m−2, oxygen index = 17.2 vol%, no UL-94 horizontal burn rating) since it burns without residue and with a very high effective heat of combustion. Adding aluminum diethylphosphinate results in efficient flame inhibition and improves the reaction to small flame, but it is less effective in the cone calorimeter. Its efficacy levels off for amounts >∼25 wt%. As the most promising synergistic system, aluminum diethylphosphinate/melamine polyphosphate was identified, combining the main gas action of aluminum diethylphosphinate with condensed phase mechanisms. The protection layer was further improved with several adjuvants. Keeping the overall flame retardant content at 30 wt%, aluminum diethylphosphinate/melamine polyphosphate/titanium dioxide and aluminum diethylphosphinate/melamine polyphosphate/boehmite were the best approaches. An oxygen index of up to 27 vol% was achieved and a horizontal burn rating in UL 94 with immediate self-extinction; peak heat release rate decreased by up to 85% compared to thermoplastic styrene–ethylene–butylene–styrene elastomers, to <300 kW m−2.


Journal of Thermal Analysis and Calorimetry | 2002

TG-MS and TG-FTIR applied for an unambiguous thermal analysis of intumescent coatings

Ralf Kunze; Bernhard Schartel; M. Bartholmai; Dietmar Neubert; R. Schriever

Thermogravimetry (TG), thermogravimetry coupled with mass spectroscopy (TG-MS) and thermogravimetry coupled with Fourier transform infrared spectroscopy (TG-FTIR) were used to characterise the thermo-oxidative behaviour of two intumescent coating materials. The temperature dependence, the corresponding volatile products and the amount of residue of the different processes were determined. Using both TG-MS and TG-FTIR results in an unambiguous interpretation of the volatile products. Characteristics such as the influence of endothermic reactions, the release of non-flammable gases, the dehydrogenation enhancing the char formation and the stability of the cellular char were discussed in detail. It was demonstrated, that TG, TG-MS and TG-FTIR are powerful methods to investigate mechanisms in intumescent coatings and that they are suitable methods in respect to quality assurance and unambiguous identification of such materials.


E-polymers | 2003

Comprehensive fire behaviour assessment of polymeric materials based on cone calorimeter investigations

Bernhard Schartel; Ulrike Braun

Abstract Bench scale performance based cone calorimeter investigations were conducted on glass fibre reinforced polyamide 66 (PA-66) and high impact polystyrene (HIPS) materials. Red phosphorus and magnesium hydroxide were used as fire retardants. Dilution, heat sink, barrier and charring mechanisms are considered to be active in the condensed phase. Dilution, cooling and flame poisoning mechanisms are discussed for the gas phase. Cone calorimeter data are used to give a comprehensive fire behaviour assessment in terms of the propensity to cause a quick growing fire and of the propensity to cause a fire of long duration. The external heat flux is varied between 30 and 75 kW/m2 so that the results for combustion behaviour and flame retardancy, respectively, are valid for different fire scenarios and fire tests. Results on the intrinsic contribution of the steady heat release rate per unit area reveal information about the flammability behaviour. UL 94 results are predicted in close correspondence to UL 94 experiments.

Collaboration


Dive into the Bernhard Schartel's collaboration.

Top Co-Authors

Avatar

Ulrike Braun

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Ciesielski

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bettina Dittrich

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Christian Jäger

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uta Knoll

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Volker Wachtendorf

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Emanuela Gallo

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Researchain Logo
Decentralizing Knowledge