Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernhard Schermer is active.

Publication


Featured researches published by Bernhard Schermer.


Cell | 2007

A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing

Pablo Landgraf; Mirabela Rusu; Robert L. Sheridan; Alain Sewer; Nicola Iovino; Alexei A. Aravin; Sébastien Pfeffer; Amanda Rice; Alice O. Kamphorst; Markus Landthaler; Carolina Lin; Nicholas D. Socci; Leandro C. Hermida; Valerio Fulci; Sabina Chiaretti; Robin Foà; Julia Schliwka; Uta Fuchs; Astrid Novosel; Roman Ulrich Müller; Bernhard Schermer; Ute Bissels; Jason M. Inman; Quang Phan; Minchen Chien; David B. Weir; Ruchi Choksi; Gabriella De Vita; Daniela Frezzetti; Hans Ingo Trompeter

MicroRNAs (miRNAs) are small noncoding regulatory RNAs that reduce stability and/or translation of fully or partially sequence-complementary target mRNAs. In order to identify miRNAs and to assess their expression patterns, we sequenced over 250 small RNA libraries from 26 different organ systems and cell types of human and rodents that were enriched in neuronal as well as normal and malignant hematopoietic cells and tissues. We present expression profiles derived from clone count data and provide computational tools for their analysis. Unexpectedly, a relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the differences in miRNA profiles between cell lineages and tissues. This broad survey also provides detailed and accurate information about mature sequences, precursors, genome locations, maturation processes, inferred transcriptional units, and conservation patterns. We also propose a subclassification scheme for miRNAs for assisting future experimental and computational functional analyses.


Nature Genetics | 2005

Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways

Matias Simons; Joachim Gloy; Athina Ganner; Axel Bullerkotte; Mikhail Bashkurov; Corinna Krönig; Bernhard Schermer; Thomas Benzing; Olga A. Cabello; Andreas Jenny; Marek Mlodzik; Bozena Polok; Wolfgang Driever; Tomoko Obara; Gerd Walz

Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development.


Nature Genetics | 2003

Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination

Edgar A. Otto; Bernhard Schermer; Tomoko Obara; John F. O'Toole; Karl S. Hiller; Adelheid M. Mueller; Rainer G. Ruf; Julia Hoefele; Frank Beekmann; Daniel Landau; John Foreman; Judith A. Goodship; Tom Strachan; Andreas Kispert; Matthias Wolf; Marie F. Gagnadoux; Hubert Nivet; Corinne Antignac; Gerd Walz; Iain A. Drummond; Thomas Benzing; Friedhelm Hildebrandt

Nephronophthisis (NPHP), an autosomal recessive cystic kidney disease, leads to chronic renal failure in children. The genes mutated in NPHP1 and NPHP4 have been identified, and a gene locus associated with infantile nephronophthisis (NPHP2) was mapped. The kidney phenotype of NPHP2 combines clinical features of NPHP and polycystic kidney disease (PKD). Here, we identify inversin (INVS) as the gene mutated in NPHP2 with and without situs inversus. We show molecular interaction of inversin with nephrocystin, the product of the gene mutated in NPHP1 and interaction of nephrocystin with β-tubulin, a main component of primary cilia. We show that nephrocystin, inversin and β-tubulin colocalize to primary cilia of renal tubular cells. Furthermore, we produce a PKD-like renal cystic phenotype and randomization of heart looping by knockdown of invs expression in zebrafish. The interaction and colocalization in cilia of inversin, nephrocystin and β-tubulin connect pathogenetic aspects of NPHP to PKD, to primary cilia function and to left-right axis determination.


Molecular and Cellular Biology | 2003

Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling

Tobias B. Huber; Björn Hartleben; Jeong Kim; Miriam Schmidts; Bernhard Schermer; Alexander Keil; Lotti Egger; Rachel L. Lecha; Christoph Borner; Hermann Pavenstädt; Andrey S. Shaw; Gerd Walz; Thomas Benzing

ABSTRACT Mutations of NPHS1 or NPHS2, the genes encoding nephrin and podocin, as well as the targeted disruption of CD2-associated protein (CD2AP), lead to heavy proteinuria, suggesting that all three proteins are essential for the integrity of glomerular podocytes, the visceral glomerular epithelial cells of the kidney. It has been speculated that these proteins participate in common signaling pathways; however, it has remained unclear which signaling proteins are actually recruited by the slit diaphragm protein complex in vivo. We demonstrate that both nephrin and CD2AP interact with the p85 regulatory subunit of phosphoinositide 3-OH kinase (PI3K) in vivo, recruit PI3K to the plasma membrane, and, together with podocin, stimulate PI3K-dependent AKT signaling in podocytes. Using two-dimensional gel analysis in combination with a phosphoserine-specific antiserum, we demonstrate that the nephrin-induced AKT mediates phosphorylation of several target proteins in podocytes. One such target is Bad; its phosphorylation and inactivation by 14-3-3 protects podocytes against detachment-induced cell death, suggesting that the nephrin-CD2AP-mediated AKT activity can regulate complex biological programs. Our findings reveal a novel role for the slit diaphragm proteins nephrin, CD2AP, and podocin and demonstrate that these three proteins, in addition to their structural functions, initiate PI3K/AKT-dependent signal transduction in glomerular podocytes.


Nature Genetics | 2003

Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis.

Heike Olbrich; Manfred Fliegauf; Julia Hoefele; Andreas Kispert; Edgar A. Otto; Andreas Volz; Matthias Wolf; Gürsel Sasmaz; Ute Trauer; Richard Reinhardt; Ralf Sudbrak; Corinne Antignac; Norbert Gretz; Gerd Walz; Bernhard Schermer; Thomas Benzing; Friedhelm Hildebrandt; Heymut Omran

Nephronophthisis (NPHP), a group of autosomal recessive cystic kidney disorders, is the most common genetic cause of progressive renal failure in children and young adults. NPHP may be associated with Leber congenital amaurosis, tapeto-retinal degeneration, cerebellar ataxia, cone-shaped epiphyses, congenital oculomotor apraxia and hepatic fibrosis. Loci associated with an infantile type of NPHP on 9q22–q31 (NPHP2), juvenile types of NPHP on chromosomes 2q12–q13 (NPHP1) and 1p36 (NPHP4) and an adolescent type of NPHP on 3q21–q22 (NPHP3) have been mapped. NPHP1 and NPHP4 have been identified, and interaction of the respective encoded proteins nephrocystin and nephrocystin-4 has been shown. Here we report the identification of NPHP3, encoding a novel 1,330-amino acid protein that interacts with nephrocystin. We describe mutations in NPHP3 in families with isolated NPHP and in families with NPHP with associated hepatic fibrosis or tapeto-retinal degeneration. We show that the mouse ortholog Nphp3 is expressed in the node, kidney tubules, retina, respiratory epithelium, liver, biliary tract and neural tissues. In addition, we show that a homozygous missense mutation in Nphp3 is probably responsible for the polycystic kidney disease (pcy) mouse phenotype. Interventional studies in the pcy mouse have shown beneficial effects by modification of protein intake and administration of methylprednisolone, suggesting therapeutic strategies for treating individuals with NPHP3.


American Journal of Human Genetics | 2008

Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia.

Carsten Bergmann; Manfred Fliegauf; Nadina Ortiz Brüchle; Valeska Frank; Heike Olbrich; J. Kirschner; Bernhard Schermer; Ingolf Schmedding; Andreas Kispert; Bettina Kränzlin; Gudrun Nürnberg; Christian Becker; Tiemo Grimm; Gundula Girschick; Sally Ann Lynch; Peter Kelehan; Jan Senderek; Thomas J. Neuhaus; Thomas Stallmach; Hanswalter Zentgraf; Peter Nürnberg; Norbert Gretz; Cecilia Lo; Soeren S. Lienkamp; Tobias Schäfer; Gerd Walz; Thomas Benzing; Klaus Zerres; Heymut Omran

Many genetic diseases have been linked to the dysfunction of primary cilia, which occur nearly ubiquitously in the body and act as solitary cellular mechanosensory organelles. The list of clinical manifestations and affected tissues in cilia-related disorders (ciliopathies) such as nephronophthisis is broad and has been attributed to the wide expression pattern of ciliary proteins. However, little is known about the molecular mechanisms leading to this dramatic diversity of phenotypes. We recently reported hypomorphic NPHP3 mutations in children and young adults with isolated nephronophthisis and associated hepatic fibrosis or tapetoretinal degeneration. Here, we chose a combinatorial approach in mice and humans to define the phenotypic spectrum of NPHP3/Nphp3 mutations and the role of the nephrocystin-3 protein. We demonstrate that the pcy mutation generates a hypomorphic Nphp3 allele that is responsible for the cystic kidney disease phenotype, whereas complete loss of Nphp3 function results in situs inversus, congenital heart defects, and embryonic lethality in mice. In humans, we show that NPHP3 mutations can cause a broad clinical spectrum of early embryonic patterning defects comprising situs inversus, polydactyly, central nervous system malformations, structural heart defects, preauricular fistulas, and a wide range of congenital anomalies of the kidney and urinary tract (CAKUT). On the functional level, we show that nephrocystin-3 directly interacts with inversin and can inhibit like inversin canonical Wnt signaling, whereas nephrocystin-3 deficiency leads in Xenopus laevis to typical planar cell polarity defects, suggesting a role in the control of canonical and noncanonical (planar cell polarity) Wnt signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels

Tobias B. Huber; Bernhard Schermer; Roman Ulrich Müller; Martin Höhne; Malte P. Bartram; Andrea Calixto; Henning Hagmann; Christian Reinhardt; Fabienne Koos; Karl Kunzelmann; Elena Shirokova; Dietmar Krautwurst; Christian Harteneck; Matias Simons; Hermann Pavenstädt; Dontscho Kerjaschki; Christoph Thiele; Gerd Walz; Martin Chalfie; Thomas Benzing

The prohibitin (PHB)-domain proteins are membrane proteins that regulate a variety of biological activities, including mechanosensation, osmotic homeostasis, and cell signaling, although the mechanism of this regulation is unknown. We have studied two members of this large protein family, MEC-2, which is needed for touch sensitivity in Caenorhabditis elegans, and Podocin, a protein involved in the function of the filtration barrier in the mammalian kidney, and find that both proteins bind cholesterol. This binding requires the PHB domain (including palmitoylation sites within it) and part of the N-terminally adjacent hydrophobic domain that attaches the proteins to the inner leaflet of the plasma membrane. By binding to MEC-2 and Podocin, cholesterol associates with ion-channel complexes to which these proteins bind: DEG/ENaC channels for MEC-2 and TRPC channels for Podocin. Both the MEC-2-dependent activation of mechanosensation and the Podocin-dependent activation of TRPC channels require cholesterol. Thus, MEC-2, Podocin, and probably many other PHB-domain proteins by binding to themselves, cholesterol, and target proteins regulate the formation and function of large protein–cholesterol supercomplexes in the plasma membrane.


The EMBO Journal | 2005

Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation

Michael Köttgen; Thomas Benzing; Thomas Simmen; Robert Tauber; Björn Buchholz; Sylvain F. Feliciangeli; Tobias B. Huber; Bernhard Schermer; Albrecht Kramer-Zucker; Katja Höpker; Katia Carmine Simmen; Christoph Carl Tschucke; Richard Sandford; Emily Kim; Gary Thomas; Gerd Walz

The trafficking of ion channels to the plasma membrane is tightly controlled to ensure the proper regulation of intracellular ion homeostasis and signal transduction. Mutations of polycystin‐2, a member of the TRP family of cation channels, cause autosomal dominant polycystic kidney disease, a disorder characterized by renal cysts and progressive renal failure. Polycystin‐2 functions as a calcium‐permeable nonselective cation channel; however, it is disputed whether polycystin‐2 resides and acts at the plasma membrane or endoplasmic reticulum (ER). We show that the subcellular localization and function of polycystin‐2 are directed by phosphofurin acidic cluster sorting protein (PACS)‐1 and PACS‐2, two adaptor proteins that recognize an acidic cluster in the carboxy‐terminal domain of polycystin‐2. Binding to these adaptor proteins is regulated by the phosphorylation of polycystin‐2 by the protein kinase casein kinase 2, required for the routing of polycystin‐2 between ER, Golgi and plasma membrane compartments. Our paradigm that polycystin‐2 is sorted to and active at both ER and plasma membrane reconciles the previously incongruent views of its localization and function. Furthermore, PACS proteins may represent a novel molecular mechanism for ion channel trafficking, directing acidic cluster‐containing ion channels to distinct subcellular compartments.


Journal of Clinical Investigation | 2010

PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome

Inga Ebermann; Jennifer B. Phillips; Max C. Liebau; Robert K. Koenekoop; Bernhard Schermer; Irma Lopez; Ellen Schäfer; Anne-Françoise Roux; Claudia Dafinger; Antje Bernd; Eberhart Zrenner; Mireille Claustres; Bernardo Blanco; Gudrun Nürnberg; Peter Nürnberg; Rebecca Ruland; Monte Westerfield; Thomas Benzing; Hanno J. Bolz

Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain-containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein-coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease.


Journal of Clinical Investigation | 2011

Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics

Claudia Dafinger; Max C. Liebau; Solaf M. Elsayed; Yorck Hellenbroich; Eugen Boltshauser; Georg Christoph Korenke; Francesca Fabretti; Andreas R. Janecke; Inga Ebermann; Gudrun Nürnberg; Peter Nürnberg; Hanswalter Zentgraf; Friederike Koerber; Klaus Addicks; Ezzat Elsobky; Thomas Benzing; Bernhard Schermer; Hanno J. Bolz

Joubert syndrome (JBTS) is characterized by a specific brain malformation with various additional pathologies. It results from mutations in any one of at least 10 different genes, including NPHP1, which encodes nephrocystin-1. JBTS has been linked to dysfunction of primary cilia, since the gene products known to be associated with the disorder localize to this evolutionarily ancient organelle. Here we report the identification of a disease locus, JBTS12, with mutations in the KIF7 gene, an ortholog of the Drosophila kinesin Costal2, in a consanguineous JBTS family and subsequently in other JBTS patients. Interestingly, KIF7 is a known regulator of Hedgehog signaling and a putative ciliary motor protein. We found that KIF7 co-precipitated with nephrocystin-1. Further, knockdown of KIF7 expression in cell lines caused defects in cilia formation and induced abnormal centrosomal duplication and fragmentation of the Golgi network. These cellular phenotypes likely resulted from abnormal tubulin acetylation and microtubular dynamics. Thus, we suggest that modified microtubule stability and growth direction caused by loss of KIF7 function may be an underlying disease mechanism contributing to JBTS.

Collaboration


Dive into the Bernhard Schermer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus M. Rinschen

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge