Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernhard Weisse is active.

Publication


Featured researches published by Bernhard Weisse.


Journal of Biomechanics | 2003

Improvement of the reliability of ceramic hip joint implants

Bernhard Weisse; Marcel Zahner; W. Weber; W. Rieger

The aim of this article is to present the optimization of a proof test procedure of ceramic hip joint ball heads. The proof test rejects defective samples in the production line before being implanted into human body. Thereby on every ceramic ball head a static load is applied, which is somewhat higher than the maximum physiological load. The magnitude of the applied load should not damage the samples which are free of flaws in the high stress area. The configuration of the proof test influences the stress distribution in the ball head, which should be similar to the physiological case. To determine the stress distribution, a non-linear finite element (FE) analysis was performed and the results were validated by measurements. With an iterative approach based on FE calculations the proof test configuration was optimized in such a way that the stress distribution in the ball head is similar to the stress distribution in vivo. In this study all ball heads showed very high fatigue resistance after being proof tested and fulfilled the requirements of the FDA (Food and Drug Administration, USA) described in the Guidance Document for the Preparation of Premarket Notifications for Ceramic Ball Hip System. The probability of a fracture of an implanted ceramic ball head can be decreased by the presented optimized proof test procedure. Latter can thus improve the reliability of ceramic hip joint ball heads. The study was supported by the KTI (Commission for Technology and Innovation, Switzerland).


Computer Methods in Biomechanics and Biomedical Engineering | 2011

A multibody modelling approach to determine load sharing between passive elements of the lumbar spine.

Alireza Abouhossein; Bernhard Weisse; Stephen J. Ferguson

The human spinal segment is an inherently complex structure, a combination of flexible and semi-rigid articulating elements stabilised by seven principal ligaments. An understanding of how mechanical loading is shared among these passive elements of the segment is required to estimate tissue failure stresses. A 3D rigid body model of the complete lumbar spine has been developed to facilitate the prediction of load sharing across the passive elements. In contrast to previous multibody models, this model includes a non-linear, six degrees of freedom intervertebral disc, facet bony articulations and all spinal ligaments. Predictions of segmental kinematics and facet joint forces, in response to pure moment loading (flexion–extension), were compared to published in vitro data. On inclusion of detailed representation of the disc and facets, the multibody model fully captures the non-linear flexibility response of the spinal segment, i.e. coupled motions and a mobile instantaneous centre of rotation. Predicted facet joint forces corresponded well with reported values. For the loading case considered, the model predicted that the ligaments are the main stabilising elements within the physiological motion range; however, the disc resists a greater proportion of the applied load as the spine is fully flexed. In extension, the facets and capsular ligaments provide the principal resistance. Overall patterns of load distribution to the spinal ligaments are in agreement with previous predictions; however, the current model highlights the important role of the intraspinous ligament in flexion and the potentially high risk of failure. Several important refinements to the multibody modelling of the passive elements of the spine have been described, and such an enhanced passive model can be easily integrated into a full musculoskeletal model for the prediction of spinal loading for a variety of daily activities.


Journal of The Mechanical Behavior of Biomedical Materials | 2012

Determination of the translational and rotational stiffnesses of an L4–L5 functional spinal unit using a specimen-specific finite element model

Bernhard Weisse; Ameet Aiyangar; Ch. Affolter; R. Gander; Giovanni P. Terrasi; Heidi-Lynn Ploeg

The knowledge of spinal kinematics is of paramount importance for many aspects of clinical application (i.e. diagnosis, treatment and surgical intervention) and for the development of new spinal implants. The aim of this study was to determine the translational and rotational stiffnesses of a functional spinal unit (FSU) L4-L5 using a specimen-specific finite element model. The results are needed as input data for three-dimensional (3D) multi-body musculoskeletal models in order to simulate vertebral motions and loading in the lumbar spine during daily activities. Within the modelling process, a technique to partition the constitutive members and to calibrate their mechanical properties for the complex model is presented. The material and geometrical non-linearities originating from the disc, the ligaments and the load transfer through the zygapophysial joints were considered. The FSU was subjected to pure moments and forces in the three anatomical planes. For each of the loading scenarios, with and without vertical and follower preload, the presented technique provides results in fair agreement with the literature. The novel representation of the nonlinear behaviour of the translational and rotational stiffness of the disc as a function of the displacement can be used directly as input data for multi-body models.


Computer Methods in Biomechanics and Biomedical Engineering | 2016

Intervertebral reaction force prediction using an enhanced assembly of OpenSim models

Marco Senteler; Bernhard Weisse; Dominique A. Rothenfluh; Jess G. Snedeker

OpenSim offers a valuable approach to investigating otherwise difficult to assess yet important biomechanical parameters such as joint reaction forces. Although the range of available models in the public repository is continually increasing, there currently exists no OpenSim model for the computation of intervertebral joint reactions during flexion and lifting tasks. The current work combines and improves elements of existing models to develop an enhanced model of the upper body and lumbar spine. Models of the upper body with extremities, neck and head were combined with an improved version of a lumbar spine from the model repository. Translational motion was enabled for each lumbar vertebrae with six controllable degrees of freedom. Motion segment stiffness was implemented at lumbar levels and mass properties were assigned throughout the model. Moreover, body coordinate frames of the spine were modified to allow straightforward variation of sagittal alignment and to simplify interpretation of results. Evaluation of model predictions for level L1–L2, L3–L4 and L4–L5 in various postures of forward flexion and moderate lifting (8 kg) revealed an agreement within 10% to experimental studies and model-based computational analyses. However, in an extended posture or during lifting of heavier loads (20 kg), computed joint reactions differed substantially from reported in vivo measures using instrumented implants. We conclude that agreement between the model and available experimental data was good in view of limitations of both the model and the validation datasets. The presented model is useful in that it permits computation of realistic lumbar spine joint reaction forces during flexion and moderate lifting tasks. The model and corresponding documentation are now available in the online OpenSim repository.


Journal of Orthopaedic Research | 2017

Fusion angle affects intervertebral adjacent spinal segment joint forces-Model-based analysis of patient specific alignment.

Marco Senteler; Bernhard Weisse; Dominique A. Rothenfluh; Mazda Farshad; Jess G. Snedeker

This study addresses the hypothesis that adjacent segment intervertebral joint loads are sensitive to the degree of lordosis that is surgically imposed during vertebral fusion. Adjacent segment degeneration is often observed after lumbar fusion, but a causative mechanism is not yet clearly evident. Altered kinematics of the adjacent segments and potentially nonphysiological mechanical joint loads have been implicated in this process. However, little is known of how altered alignment and kinematics influence loading of the adjacent intervertebral joints under consideration of active muscle forces. This study investigated these effects by simulating L4/5 fusions using kinematics‐driven musculoskeletal models of one generic and eight sagittal alignment‐specific models. Models featured different spinopelvic configurations but were normalized by body height, masses, and muscle properties. Fusion of the L4/5 segment was implemented in an in situ (22°), hyperlordotic (32°), and hypolordotic (8°) fashion and kinematic input parameters were changed accordingly based on findings of an in vitro investigation. Bending motion from upright standing to 45° forward flexion and back was simulated for all models in intact and fused conditions. Joint loads at adjacent levels and moment arms of spinal muscles experienced changes after all types of fusion. Hypolordotic configuration led to an increase of adjacent segment (L3/4) shear forces of 29% on average, whereas hyperlordotic fusion reduced shear by 39%. Overall, L4/5 in situ fusion resulted in intervertebral joint forces closest to intact loading conditions. An artificial decrease in lumbar lordosis (minus 14° on average) caused by an L4/5 fusion lead to adverse loading conditions, particularly at the cranial adjacent levels, and altered muscle moment arms, in particular for muscles in the vicinity of the fusion.


Biomedical Engineering Online | 2014

Are asymmetric metal markings on the cone surface of ceramic femoral heads an indication of entrapped debris

Sebastian Valet; Bernhard Weisse; Jakob Kuebler; Martin Zimmermann; Christian Affolter; Giovanni P. Terrasi

BackgroundThe probability of in vivo failure of ceramic hip joint implants is very low (0.004-0.05%). In addition to material flaws and overloading, improper handling during implantation can induce fractures of the ceramic ball head in the long term. Identifying the causes of an in vivo fracture contributes to improved understanding and potentially to further reduction of the fracture probability for patients. Asymmetric metal markings on the cone surface of in vivo ball head fractures have been reported. The question, therefore, is whether asymmetric loading is the sole cause or whether additional factors, specifically contamination entrapped in the taper fit, also contribute or are even the main cause.MethodsThe influence of the asymmetric physiological load configuration on resulting metal markings in the cone surface of an alumina femoral ball head with and without biological contaminants was investigated. Static and cyclic tests on ball heads were carried out in a load configuration of 0° (axisymmetric) and 40° in a physiological environment. The analysis of the metal marking was carried out to gain a better understanding of the processes that contribute to the generation of metal marking. Fractography was carried out to determine the fracture initiation of failed ball heads.ResultsDifferent types and sizes of residuals entrapped in the conical surface are shown to yield strongly asymmetric metal marking patterns. All heads tested without contaminants exhibited an almost homogenous distribution of residual metal markings around the circumference of the ceramic cone surface at the proximal end of the bore hole. The failure of ball heads that contained entrapped contaminants revealed a common fracture pattern. The site of fracture initiation on two of the failed heads was in the entrance region of the bore hole on the superior half of the head.ConclusionAsymmetric metal markings observed on the ball heads tested in this investigation are most probably caused by the presence of contaminants entrapped in the taper fit. Homogenous metal mark distributions around the circumference indicate proper assembly of the ball head without entrapped contaminants. It should, however, be noted that different taper designs may possibly result in different marking patterns.


Computer Methods in Biomechanics and Biomedical Engineering | 2013

Quantifying the centre of rotation pattern in a multi-body model of the lumbar spine

Alireza Abouhossein; Bernhard Weisse; Stephen J. Ferguson

Understanding the kinematics of the spine provides paramount knowledge for many aspects of the clinical analysis of back pain. More specifically, visualisation of the instantaneous centre of rotation (ICR) enables clinicians to quantify joint laxity in the segments, avoiding a dependence on more inconclusive measurements based on the range of motion and excessive translations, which vary in every individual. Alternatively, it provides motion preserving designers with an insight into where a physiological ICR of a motion preserving prosthesis can be situated in order to restore proper load distribution across the passive and active elements of the lumbar region. Prior to the use of an unconstrained dynamic musculoskeletal model system, based on multi-body models capable of transient analysis, to estimate segmental loads, the model must be kinematically evaluated for all possible sensitivity due to ligament properties and the initial locus of intervertebral disc (IVD). A previously calibrated osseoligamentous model of lumbar spine was used to evaluate the changes in ICR under variation of the ligament stiffness and initial locus of IVD, when subjected to pure moments from 0 to 15 Nm. The ICR was quantified based on the closed solution of unit quaternion that improves accuracy and prevents coordinate singularities, which is often observed in Euler-based methods and least squares principles. The calculation of the ICR during flexion/extension revealed complexity and intrinsic nonlinearity between flexion and extension. This study revealed that, to accommodate a good agreement between in vitro data and the multi-body model predictions, in flexion more laxity is required than in extension. The results showed that the ICR location is concentrated in the posterior region of the disc, in agreement with previous experimental studies. However, the current multi-body model demonstrates a sensitivity to the initial definition of the ICR, which should be recognised as a limitation of the method. Nevertheless, the current simulations suggest that, due to the constantly evolving path of the ICR across the IVD during flexion–extension, a movable ICR is a necessary condition in multi-body modelling of the spine, in the context of whole body simulation, to accurately capture segmental kinematics and kinetics.


Cellulose | 2017

Microfibrillated cellulose foams obtained by a straightforward freeze–thawing–drying procedure

Sébastien Josset; Lynn Hansen; Paola Orsolini; M. Griffa; Olga Kuzior; Bernhard Weisse; Tanja Zimmermann; Thomas Geiger

Microfibrillated cellulose (MFC) is continuously gaining attention due to its outstanding mechanical properties, in particular high strength-to-weight ratio. Recently, more and more studies target the production of porous materials, such as foams, out of this natural resource. Commonly, an energy-consuming freeze–drying method is utilized for producing pure MFC porous structures from water-based suspensions, which renders these products particularly unattractive for industry. Although alternatives for foam production have been proposed, using either modified MFC or with various additives, the freeze–drying step is still one of the most critical bottle-neck of MFC foam production upscaling. A novel straightforward freeze–thawing–drying procedure assisted by the common additive urea was herein proposed. Such method allows the production of mechanically stable, lightweight MFC structures under low-cost ambient conditions drying. The influence of the cellulose fibril characteristics, the suspension formulation and the process parameters on the final foam properties have been studied in terms of porosity, density and mechanical properties.


Journal of Biomechanics | 2017

Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path

Marco Senteler; Ameet Aiyangar; Bernhard Weisse; Mazda Farshad; Jess G. Snedeker

Translational vertebral motion during functional tasks manifests itself in dynamic loci for center of rotation (COR). A shift of COR affects moment arms of muscles and ligaments; consequently, muscle and joint forces are altered. Based on posture- and level-specific trends of COR migration revealed by in vivo dynamic radiography during functional activities, it was postulated that the instantaneous COR location for a particular joint is optimized in order to minimize the joint reaction forces. A musculoskeletal multi-body model was employed to investigate the hypotheses that (1) a posterior COR in upright standing and (2) an anterior COR in forward flexed posture leads to optimized lumbar joint loads. Moreover, it was hypothesized that (3) lower lumbar levels benefit from a more superiorly located COR. The COR in the model was varied from its initial position in posterior-anterior and inferior-superior direction up to ±6 mm in steps of 2 mm. Movement from upright standing to 45° forward bending and backwards was simulated for all configurations. Joint reaction forces were computed at levels L2L3 to L5S1. Results clearly confirmed hypotheses (1) and (2) and provided evidence for the validity of hypothesis (3), hence offering a biomechanical rationale behind the migration paths of CORs observed during functional flexion/extension movement. Average sensitivity of joint force magnitudes to an anterior shift of COR was +6 N/mm in upright and -21 N/mm in 30° forward flexed posture, while sensitivity to a superior shift in upright standing was +7 N/mm and -8N/mm in 30° flexion. The relation between COR loci and joint loading in upright and flexed postures could be mainly attributed to altered muscle moment arms and consequences on muscle exertion. These findings are considered relevant for the interpretation of COR migration data, the development of numerical models, and could have an implication on clinical diagnosis and treatment or the development of spinal implants.


Journal of Testing and Evaluation | 2015

Compressive Testing of Ductile High-Strength Alloys

Christian Affolter; U. Müller; Christian Leinenbach; Bernhard Weisse

Compression testing of metal alloys is a basic procedure in material characterization and analysis. Though it follows many of the guidelines and physical considerations as tensile testing, in some respects compression testing implies more complexity, more difficulties, and, consequently, more possible causes for inaccuracy compared to tensile testing. Hence, compressive testing is applied much less than the standard tensile tests, unless the load case is requiring specific test data from compression, e.g., when brittle or cast alloys are applied. Ductile metals compressed to high strains require further consideration when the yield strength in compression, the compressive strength, or even the full flow curve for plasticity must be identified. A sophisticated test procedure for compression testing of ductile metals in the plasticity range has been developed and is presented. It allows the determination of elastic modulus, yield strength, and flow curve up to high strains. The procedure was evaluated with comparative tensile tests on identical specimens and with a round-robin test with a testing-machine manufacturer. Further considerations for compression testing and for the strain measurement are presented.

Collaboration


Dive into the Bernhard Weisse's collaboration.

Top Co-Authors

Avatar

Christian Affolter

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

G. Piskoty

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Alireza Abouhossein

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ch. Affolter

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Giovanni P. Terrasi

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Koller

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge